Where there is a will: Fertility behavior and sex bias in large families

PRELIMINARY JOB MARKET PAPER
Tarun Jain∗†
University of Virginia
August 1, 2008

Abstract

Despite Sen’s (1990) warning that “more than 100 million women are missing”, the child sex ratio in India fell from 945 girls per thousand boys in 1991 to 927 girls in 2001. Most studies rely on cultural factors and labor market biases to explain this decline. In this paper, I propose an institutional explanation where fertility behavior driven by bequest motives generates sex-based differences in outcomes even when parents do not explicitly prefer boys over girls. In a patrilocal society where women do not inherit property and heads of joint families aim to retain assets within the family for future generations, adult brothers are in a “race for boys” to maximize their inheritance of agricultural land. I confirm this theoretical prediction, termed “strategic fertility”, using data from rural households in 16 major Indian states. Strategic fertility implies that girls have systematically more siblings compared to boys, and hence receive smaller shares of household resources, offering an explanation for sex-based differences in outcomes.

Keywords: Strategic bequest. Joint family. Fertility choice. Gender discrimination. Sex ratio.
JEL Codes: H31, J12, J13, J16, O15.

∗I thank my advisors Leora Friedberg, Sanjay Jain and John Pepper for suggestions and support. I am grateful to the Bankard Fund for Political Economy for financial support and to Mark Rosenzweig and Andrew Foster for sharing the REDS dataset. All errors are my own.
†Department of Economics, University of Virginia, P.O. Box 400182, Charlottesville VA 22904-4182 USA. Email: tarun@virginia.edu. Website: http://people.virginia.edu/~tj9d/
1 Introduction

To my brother belong your green fields
O father, while I am banished afar...

– Hindi folksong

In the eighteen years since Sen’s (1990) declaration that “more than 100 million women are missing” sex ratios have worsened in many parts of Asia. In India, the child sex ratio fell from 945 girls per thousand boys in 1991 to 927 girls in 2001. An extensive literature has sought to explain this decline, identifying various mechanisms such as differential labor market returns to boys and girls (Rosenzweig and Schultz 1982) and neglect of girls’ nutrition and health (Sen 1992), although the causal mechanisms for these effects are not clear. In this paper, I show that bequest and associated fertility behavior in an agricultural society is a significant driver of differential health and survival outcomes for boys and girls, even when parents do not treat daughters and sons differently.

The traditional literature on this topic suggests that economic or cultural considerations lead to discriminatory behavior by parents. The specific mechanisms include abortion if pre-natal diagnostic testing reveals the foetus is female, infanticide if the newborn is a girl, and discrimination in the allocation of food and medical care for girls throughout infancy and childhood. Policy responses have therefore sought to directly address these mechanisms. In 1994, the Pre-Natal Diagnostic Techniques Act regulated the use of ultrasound machines and banned the use of “techniques for the purpose of pre-natal sex determination leading to female foeticide”. State governments in Delhi and Haryana launched the “Ladli” scheme offering payments to low-income parents whose daughters survive and achieve certain educational targets. Under the “Palna” scheme, the central government established “Cradle Baby Reception Centres” in each district where parents can leave unwanted girls for either future adoption or rearing in state-run orphanages.

Existing explanations have proved incomplete, and the policy responses ineffective, not least because the estimated number of excess female deaths due to foeticide or infanticide does
not account for the observed sex ratio. In addition, explanations that rely on discrimination in the labor market or in cultural practices fail many tests. If economic considerations drive discriminatory behavior, why are outcomes for girls relatively worse in prosperous regions? For instance, the sex ratio is worse in Indian states where land forms a large part of family assets (figure 1) and where income from agriculture is high (figure 2). Also, household level data investigated in this paper indicates that the sex ratio is also worse in large “joint” families, which predominate in rural farming communities. Why is this so, when larger families would arguably provide greater stability and security compared to independent families? And what is the role of land ownership in determining the sex ratio?

I address these questions in a model of bequest and fertility behavior among rural, land-owning families in a patrilocal society. Almost universally in India, adult daughters leave their natal family at the time of marriage to join their husband’s family and do not inherit land from their fathers. The joint family head divides his bequest of land among remaining claimants. In this, the head is motivated by a desire to retain the land within the family line carried through by his male descendants. If a head has only daughters, then the land passes from the head’s family to the daughter’s husband’s family. Thus, the household head makes land bequest decisions after observing the number of sons that adult claimants have, since giving land to a claimant with many daughters and few sons increases the probability that land will eventually leave the family. The claimants anticipate the head’s preferences and simultaneously make fertility choices to maximize their expected inheritance, taking into account expectations of other claimants’ fertility choices. Even when they are indifferent between boys and girls, the claimants will have more children when the other claimants have more boys. An implication of this fertility pattern is that the average girl in a joint family has more siblings than the average boy, which has been shown to lead to worse health and survival outcomes even when parents’ total resources are same and they do not discriminate between their sons and daughters.

The bequest and fertility behavior as well as the demographic implications are tested using a nationally representative dataset of rural households in India. The results confirm that household heads bequeath a larger share of the land to claimants with more sons. In response,
claimants in joint families increase fertility in a “race for boys” motivated by a desire to increase their inheritance. The results are robust to two important checks. First, “strategic fertility” is significant when the household head owns land, but not otherwise. Second, strategic fertility is observed before the household head dies and bequeaths the land, but not afterwards.

As a result of strategic fertility behavior, the average girl who lives in a joint family with two or more claimants has nearly twice as many excess siblings compared to the average girl who lives in a family with a single claimant. These results suggest a large, yet, so far, unexamined role for household structure in explaining fertility behavior and poorer outcomes for girls. With agricultural land bequests as an incentive for differential fertility behavior, sex discrimination might increase with the value of land, although this effect might be mitigated by the shift away from farming to other professions.

Strategic fertility behavior poses several challenges for policy-makers aiming to alleviate poorer outcomes for girls in developing countries. The institution of joint families and associated practices remain entrenched in rural society despite efforts to withdraw legal recognition to such family structures. Also, unlike overt acts of sex-selective foeticide and infanticide, individual instances of bequest-motivated differential fertility stopping behavior are arguably difficult to detect or prevent.

I make several original contributions in this paper. First, I develop and test a novel hypothesis for the origin of gender differences in India that bypasses differences in parental preferences or behavior and relies instead on the nature of norms and institutions associated with land management, marriage and fertility choices. This comprehensive hypothesis accounts for a number of puzzles associated with sex differences observed in India.

Second, since the hypothesis relies on behavior that is specific to joint families, this paper is also a contribution to an emerging literature that recognizes the different forms of non-unitary households and family structures observed in developing countries. The joint family literature in particular is sparse, and my analysis is one of the only papers that incorporates inter and intra-generational dynamics within such families.

Finally, this paper adds to the literature on strategic bequest behavior inaugurated by Bern-
heim, Schleifer, and Summers (1985). Since land bequests form a major form of wealth acquisition in agricultural societies, this framework is particularly useful in understanding behavior in families in rural India.

This paper is organized as follows. The next section describes the social context of sex discrimination among agricultural households in rural India. Section 3 develops a theoretical model of bequest and fertility behavior in joint families and proposes testable hypotheses. Sections 4 and 5 describe the data, econometric tests and results. Section 6 concludes with discussion of the results.

2 Social context

2.1 Three discrimination puzzles

The reasons for sex differentials in child health and mortality in developing countries remain a puzzle. In their seminal contribution, Rosenzweig and Schultz (1982) propose that sex bias is a rational response to differences in economic returns to men and women. These wage differences will cause a sex bias both in labor market participation as well as in parents’ investments in their children’s health and education (Sen and Sengupta 1983).

Misogynistic social and cultural beliefs may also drive male preference (Sen 1990). Gangadharan and Maitra (2003) examine sex bias among different racial and ethnic groups in South Africa and find that sex bias is stronger in the Indian community than in any other group, perhaps due to religious beliefs that privilege men over women.

In both these frameworks, the authors argue that parents actively discriminate in favor of boys and against girls through sex-selective foeticide and infanticide. Media and popular opinion reinforces this perspective (Dugger 2001; Katz 2006). However, recent analysis has challenged this view. Demographic analysis using the National Health and Family Survey 1992 revealed that sex selective foeticide or infanticide cannot be the dominant factor explaining the skewed sex ratio (Bhargava 2003). Most excess male deaths take place during birth or soon
thereafter\(^1\), whereas most excess female deaths take place between 7 and 36 months, even after accounting for severe underreporting and misreporting of foeticides and abortions. Furthermore, estimates of sex-selective abortion, such as Arnold, Kishor, and Roy (2002) and Bhat and Zavier (2007), at best estimate 100,000 such abortions per year, which is insufficient in explaining a gender gap of tens of millions. Hence, neglect of infant girls seems to be the main driver of the differences in health and survival outcomes.

The evidence is mixed on whether such neglect represents willful or inadvertent discrimination by parents. Part of the literature argues that parents actively discriminate against daughters in allocating nutrition and health resource (see Das Gupta 1987 and the extensive literature cited in Miller 1981). However, tests of intrahousehold allocation fail to reveal significant bias in behavior. Griffiths, Matthews, and Hinde (2002) reject significant within-family differences in weight by gender.\(^2\) Instead, recent studies present evidence that son-preference manifests itself predominantly in fertility behavior so that the resulting family structure is unfavorable to girls (Becker and Lewis 1973; Basu 1989; Arnold, Choe, and Roy 1998). This fertility behavior takes the form of “stopping rules” where parents have children till a certain number of boys are born (Yamaguchi 1989; Clark 2000). Under such rules, the average girl will have systematically more siblings than the average boy, leading to fewer resources and poorer outcomes even with equitable parent behavior. The evidence suggests that stopping rules have significant impact on differential outcomes for girls compared to boys (Basu and de Jong 2008). The origin of these stopping rules is not sufficiently addressed by the literature and is the first puzzle that I will address in this paper.

Rosenzweig and Schultz (1982) argue that discrimination against girls is driven by the economic or social marketplace, suggesting that the worst outcomes are observed in the most destitute families where the marginal value of an additional son is greatest. However, Mahajan and Tarozzi (2007) report that differences in nutrition and health outcomes increased in the 1990s, a period of rapid economic growth. Das Gupta (1987) and Chakraborty and Kim (2008) find that

\(^1\)This is consistent with the medical evidence that the male foetus is much more vulnerable than a female foetus (Gloster and Williams 1992, Andersson and Bergstrom 1998, Andersen et al. 2002).

\(^2\)Also see Jensen 2003 for a list of more such studies.
the difference between girls and boys is greater in middle class and higher caste households compared to lower class and lower caste households. These contradictory findings constitute the second puzzle addressed in this paper.

Girls see worse outcomes in large, multi-generational families known as joint families. In the Rural Economic and Demographic Survey (REDS 1999), the child sex ratio was 0.816 girls per boy in joint families compared to 0.912 girls otherwise. Why this would be so is not clear, especially since recent research has shown that children in joint families benefit from higher levels of public good provision (Edlund and Rahman 2005). Perhaps co-resident grandparents transmit traditional ideas on gender roles. George (1997) suggests an active role for the paternal grandmother in performing infanticide. But exactly what these traditional ideas are, why grandparents would believe them, or what motivates grandmothers to perform such gruesome acts is left unanswered. In this paper, the open question of why girls’ outcomes are comparatively worse in joint families constitutes the third puzzle.

Thus, explanations for sex discrimination paint at best an incomplete picture, with many assumptions that do not incorporate the nuances of different family structures and social practices in India. This leaves space for an update to the theories of gender discrimination that specifically address the three puzzles outlined above.

2.2 Rural family structure

The family is the central unit of social organization, production and consumption in most agrarian societies. Much of the development literature treats the “family” as synonymous with the “household” and takes the unitary household as the basis for analysis (see Deaton 1997 for a summary). However, recent surveys that track household formation and dissolution allow researchers to explore more complicated family structures in developing societies.

Caldwell’s (1984) basic framework sheds light on various family structures in India. A “nuclear family” is formed when a couple leaves their parents’ home upon marriage to form a household with their unmarried, typically minor, children. In a “stem family”, two married couples cohabit in a household together. The younger husband is the son of the older couple.
Finally, a “joint-stem family” refers to a family where an older patriarch and his wife live with two or more adult children, along with their wives and minor children (in this paper, I use “joint family” as a shorthand for a joint-stem family). The nuclear family has been the dominant type of family organization in much of the world, except China and North India where joint families are widely observed (Das Gupta 1999).

A widespread social practice in India is that women leave their natal household at the time of marriage and move to their husband’s home. As a result of such “patrilocality” or “virilocality”, women are considered members only of their family of marriage. Consequently, they have no inheritance rights in their parents’ family, neither in law nor in practice since any land given to them would be lost to the family lineage (Agarwal 1998; Mearns 1999; Singh 2005).

Botticini and Siow (2003) show that in patrilocal societies, the household head prefers to leave a bequest of illiquid land only to his sons. Adult sons remain at home throughout their lives and work on the family’s land. If assets are distributed to all children at the time of the head’s death, sons and daughters have different incentives to exert effort on farm production. The non-resident daughter’s effort on the parents’ farm is not observable and they might shirk. Sons would not obtain complete rewards from their effort resulting in a free-riding problem with daughters benefiting disproportionately compared to their effort. Hence, they argue, this potential for free-riding explains why daughters receive their share of the bequest as dowries in the form of liquid assets at the time of marriage, rather than in the form of fixed productive assets at the time of the household head’s death. Chen (2000) offers empirical confirmation for Botticini and Siow’s (2003) hypothesis, reporting that only 13% of daughters inherited land after the death of their land-owning fathers.

The farm-based joint family is of particular interest since presumably the demands of agricultural production gave rise to such a structure. Rosenzweig and Wolpin (1985) develop a model where older family members learn how to farm a specific piece of land and transfer this knowledge to their children. This means that using family labor is relatively profitable compared to hired labor. Older and younger family members enter into an implicit contract where the elderly transfer land-specific knowledge to younger family members in return for
co-residence. Thus, the model explains both the formation of stem and joint families, as well as the paucity of land sales to non-family members. Household division and land sales occur only in case of extreme distress, particularly weather shocks.3 Rosenzweig and Wolpin (1985) report that sales of agricultural land are rare in rural India – only 1.75 percent of all families and 0.39 percent of stem and joint families in their sample reported any land sales in a year.

This explanation for household division is confirmed by Foster and Rosenzweig (2002), who present an analysis of a farm-based joint family that examines closely the role of public goods as incentives for claimants to remain within the family. When economic distress due to weather shocks or other family-wide factors reduces the provision of household public goods, more couples leave the joint family to set up independent households. In addition, household division increases due to claimant inequality in birth order, schooling and the number of sons, but not the number of daughters.

Sharing in the consumption of a household public good as well as the possibility of receiving a share in the bequest upon the head’s death keeps the sons from splitting away to form their own households. Land is the dominant form of bequest; indeed Das Gupta (1999) reports that the raison d’etre of joint families is to ensure the continuity of the estate.

Why is land preservation so important in an agricultural society, particularly compared to more liquid assets such as cash, or those that are more directly consumed such as livestock? Various studies propose answers to this question. Land is a fixed, immovable asset that cannot be lost or stolen. Thus, unlike wage employment, land offers a source of permanent income either through sale or direct consumption of the produce. This has important consequences in a society with little formal social insurance. For example, Rose (1999) reports that controlling for size of asset holdings, child survival outcomes are significantly better in land owning families. Additionally, farmers who cultivate their own land do not face classic agency problems and are motivated to exert maximum effort into production (Banerjee, Gertler, and Ghatak 2002).

The advantages of land compared to other types of assets are recognized by other agents in the village economy. For example, Feder and Onchan (1987) show that land ownership improves

3Also see Deininger, Jin, and Nagarajan (2007) for more on rural land market participation in India.
access to credit, even if it not directly linked to farm investments.

Thus, land possession, control and preservation is a significant factor influencing behavior within rural families. With land sales rare, most families obtain land through inheritance. Although the Hindu Succession Act (1956) specifies that land should be divided equally among surviving sons, the law can be circumvented by a will that expresses the head’s preferences. Hence, equal division is neither the norm nor the law, and adult sons have incentive to alter their behavior to get larger shares of land. I use these features of family behavior to explain the three sex discrimination puzzles presented in section 2.1 – why are gender differences larger in land-owning families, why is the sex ratio worse in joint families, and how do stopping rules arise in fertility behavior?

3 Theory

In Bernheim, Schleifer, and Summers (1985), parents use bequests to induce children to bring their behavior in line with the parents’ preferences. The formulation here makes two basic assumptions while adapting that model to the case of farm-based societies in developing countries. First, for reasons outlined earlier, land sales do not occur, so parents do not have the option of selling land and consuming or bequeathing the proceeds. Second, adult daughters leave the household upon marriage to live with their husband’s family whereas adult sons may continue to live with the parents. In this section, I examine what these two assumptions imply about the household head’s bequest and children’s fertility behavior. I illustrate how fertility behavior leads to systematic differences in the types of households that girls and boys live in, and how this explains the sex discrimination puzzle. The modeling exercise yields theoretical predictions that can be tested in the data.\(^4\)

\(^4\)The model presented in this section illustrates the essential mechanism of bequest, public good consumption and fertility behavior. To estimate the structural parameters, a joint family model would also incorporate farm production, labor supply, consumption, savings, marriage and residence decisions. The empirical tests in this paper show that residence decisions do not significantly affect bequest or fertility behavior. Modeling and testing other aspects of household decisions await panel datasets that comprehensively measure individual consumption within the family, along with other decisions.
I interpret the result from Botticini and Siow (2003) as an explanation for why the head prefers to bequeath land to claimants with more sons in order to perpetuate land ownership within the same lineage. If the head bequeaths any land to claimants with only daughters, then that land will leave the family. More land to claimants with more sons implies a greater probability of not having all daughters in the subsequent generation.

As an illustration, consider the case of a head who has to choose between two claimants, the first with a boy and a girl and the second with two boys. If the grandsons further have two children each after the head dies, then the probability that the first claimant has at least one grandson and land remains within the family is $\frac{3}{4}$, whereas the probability that the second claimant has at least one grandson and land remains within the family is $\frac{15}{16}$. Suppose the head also derives direct utility from bequeathing a share of his assets to each claimant, but realizes declining marginal gains from doing so. Say $u(\kappa) = \sqrt{\kappa}$, where κ is the fraction of the land bequeathed to the first claimant. Then he maximizes the expected utility from bequests by solving the following problem.

$$\max_{\kappa} \frac{3}{4} \sqrt{\kappa} + \frac{15}{16} \sqrt{1 - \kappa} \text{ such that } 0 \leq \kappa \leq 1 \quad (1)$$

The solution to the head’s problem is $\kappa = \frac{16}{41}$ and $1 - \kappa = \frac{25}{41}$ and the claimant with two sons receives a larger share of the bequest.

3.1 Model of fertility choice

This section presents a formal model of bequest with endogenous fertility behavior in joint families. The objective of the modelling exercise is to develop a mechanism that links land bequests with fertility behavior, and its influence on health and survival outcomes for girls. The theoretical model generates clear predictions that will be tested empirically in subsequent sections.

In a joint family, the family patriarch is the household head. The head’s adult sons are claimants to the family public and private goods while the head is alive, and to the family
land once the head is dead. Allocations to each claimant are based on the claimant’s family structure. In each period, claimants choose whether to try to have a child or not. Claimants choose the best strategy to maximize their payoff, given the choices made by all other claimants. Heads then observe the claimants’ family structure and fertility decisions and make bequest and consumption allocation decisions that maximize their objective function. Assuming no information constraints within the joint family, claimants work recursively to solve the head’s problem. Fertility is thus endogenous to bequest and consumption shares.

Consider a single period problem of a family with a head H and claimants indexed by $i \in \{1, \ldots, N\}$. The number of sons and daughters that claimant i has is $n_i = \{m_i, f_i\}$. Thus, the number of boys and girls for all claimants at any point can be written as

$$m' = [m_1 \ldots m_N] \text{ and } f' = [f_1 \ldots f_N]$$

Correspondingly, $\{m^0, f^0\}$ represents the number of boys and girls for all claimants at the beginning of the period. $\phi_i \in \{0, 1\}$ represents claimant i’s fertility decision in the period, where $\phi_i = 1$ if the claimant reports a pregnancy and 0 otherwise. The fertility decisions made by the set of all claimants is

$$\phi' = [\phi_1 \ldots \phi_N]$$

In this model, the family head determines the bequest share and intrahousehold allocation of private consumption goods for all claimants, as well as the household public good z. The bequest share (κ) and consumption allocation (μ) can be written as follows:

$$\kappa = [\kappa_1 \ldots \kappa_N] \text{ and } \mu = [\mu_1 \ldots \mu_N]$$

where $\sum_i \kappa_i = 1$, $\sum_i \mu_i = 1$, $\kappa_i \geq 0$, $\mu_i \geq 0$ and $z \geq 0$ for all i (2)

The head’s objective is to maximize the utility from bequests, which consists of the probability that land stays within the lineage, as well as a direct utility from bequest. The claimant’s objective is to maximize his consumption, given the preferences of the head and the other claimants. To understand the dynamics of these decisions, consider the following sequence of events.
1. Each claimant observes \(\{m^0, f^0\} \), with preferences well known within the joint family. He decides whether to try to have a child or not \((\phi_i)\).

2. The head observes \(\{m^0, f^0\} \) and the fertility decision \((\phi)\), but not the outcome, for all claimants. He decides the land allocation \((\kappa)\) as if he were to die in the current period, as well as the consumption allocation \((\mu)\) and the amount of public good \((z)\).

3. The head and all claimants observe outcomes \(\{m, f\} \) from claimants’ fertility decisions, as well as whether the head survives. At the end of the period, they realize utility payoffs based on their decisions.

This sequence of events implies that claimants anticipate the head’s decisions and react accordingly. In the two-stage game, I solve the head’s problem first, then determine the claimants’ reaction functions to the head’s decision.

The head’s utility depends on the probability \(\pi(m_i)\) of the land staying within the family and the direct utility \(u_H(\kappa_i)\) from giving. Therefore, the head’s problem can be written succinctly as:

\[
\max_{\kappa, \mu, z} EU_H = \sum_i \pi(m_i)u_H(\kappa_i, \mu_i, z) \quad (3)
\]

where \(\pi(m_i)\) is the probability that land bequeathed to claimant \(i\) stays within the family lineage and \(\{m_i, f_i\}\) is the outcome of the claimant’s fertility decision. This formulation assumes that the head draws direct utility from the act of dividing bequests and consumption allocations among various claimants. He also draws utility from his own consumption of a household public good. This maximization problem is subject to the constraints listed in (2).

Solving these equations for all claimants yields the following reaction functions.

\[
\kappa_i = \kappa(m) \quad (4)
\]

\[
\mu_i = \mu(m) \quad (5)
\]

\[
z = z(m) \quad (6)
\]
If the head has a preference for bequests to claimants with more sons, then

$$\frac{\partial \kappa_i}{\partial m_i} \geq 0, \quad \frac{\partial \kappa_i}{\partial m_{-i}} \leq 0 \quad (7)$$

I term the theoretical prediction in (7) as the strategic bequest hypothesis. In Appendix A, I show that the qualitative impact of more sons on the claimant’s share of consumption goods is the same as the impact on the bequest share.

The claimant’s expected utility depends on his consumption at the end of the period. Thus, the claimant’s objective can be written as

$$\max_{\phi_i} EU_i(x_i, x_i^\delta, n_i) \quad (8)$$

where expectations are taken over the probability that the head survives in the current period. $x_i = x_i(n, \mu, z)$ is consumption if the head survives and $x_i^\delta = x_i^\delta(n, \kappa)$ is the consumption if he dies. In both cases, consumption depends on the number of children the claimant has, since more children imply that the claimant and his wife receive a smaller personal share. Before the head’s death, the claimant’s consumption also depends on his share of the household’s private and public resources (μ, z). After the head’s death, a claimant’s consumption depends on the agricultural output from inherited land (κ). In addition, the claimant draws direct utility from his children (n).

In this specification, fertility choice ϕ_i does not enter directly into the claimant’s utility function. To understand how ϕ_i influences n_i, consider that a claimant cannot be sure of the outcome of his fertility decision. He might have a child when he does not want to and might not have a child when he does. The outcome from a fertility decision is

$$m_i = m_i^0 + I[\tilde{y} < p] \phi_i + \tilde{e}_i \quad (9)$$

The claimant can draw utility from current consumption while foreseeing his future role as a household head if his comprehensive utility consists of two separable parts - utility from consumption as a claimant and utility from bequests as a head.
\[f_i = f_i^0 + I[\bar{y} > p] \phi_i + \tilde{\epsilon}_i \]

where \(\bar{y} \) is a continuous random variable with distribution \(U[0, 1] \) and \(p \) is the exogenous probability of having a boy. \(\bar{y} < p \) implies that \(I[\bar{y} < p] = 1 \) and the claimant has another boy if \(\phi_i = 1 \). Conversely, \(\bar{y} > p \) implies that \(I[\bar{y} > p] = 1 \) and the claimant has a girl if \(\phi_i = 1 \). \(\tilde{\epsilon}_i \in \{-1, 0, 1\} \) is a discrete fertility shock whose distribution depends on \(\phi_i, m_i^0 \) and \(f_i^0 \). \(\tilde{\epsilon}_i = -1 \) can represent the loss of a child when no pregnancy is reported, or a still birth when one is. \(\tilde{\epsilon}_i = 0 \) implies that the claimant has a child if desired. With \(\tilde{\epsilon}_i = 1 \) and \(\phi_i = 1 \), twins are born when the claimant reports a pregnancy.

Plugging in the head’s reaction functions into all the claimant’s problem yields the following solution.

\[\phi_i^* = \phi_i(m^0) \]

\[\phi_{-i}^* = \phi_{-i}(m^0) \]

In order to characterize this solution, I impose further restrictions on the preferences claimants’ and head’s preferences in the next section.

3.2 Impact of fertility on family structure

Strategic bequests that lead to more pregnancies do not by themselves imply unequal sex outcomes. This section shows the demographic implications of strategic bequests over time on the differences in resource allocation between sons and daughters. I link endogenous fertility behavior with poorer outcomes for girls in joint families, even when claimants themselves do not have a preference for boys over girls. To do so, I assume that the head exhibits declining marginal utility in the bequest share to each claimant and the claimants exhibit declining marginal utility in consumption:

\[
\frac{\partial U_H}{\partial \kappa_i} \geq 0, \quad \frac{\partial^2 U_H}{\partial \kappa_i^2} < 0, \quad \frac{\partial U_i}{\partial x_i} \geq 0, \quad \frac{\partial^2 U_i}{\partial x_i^2} < 0
\]

14
where x is the claimant’s consumption. I further assume that the marginal cost of an additional child is either increasing, constant, or else declining at a rate slower than the decline in marginal utility. These conditions are important to rule out situations where a claimant always gains from having an additional child. Thus, given declining benefits from an additional child, a claimant has higher probability of trying for another child the fewer sons he already has, or the more sons the other claimants have.

\[Pr\{\phi_i = 1 \mid m_i^0, m_{-i}^0\} > Pr\{\phi_i = 1 \mid m_i^0 + 1, m_{-i}^0\} \]
\(14 \)

\[Pr\{\phi_i = 1 \mid m_i^0, m_{-i}^0 + 1\} > Pr\{\phi_i = 1 \mid m_i^0, m_{-i}^0\} \]
\(15 \)

I term the theoretical prediction in equation (15) “strategic fertility”. Given this result, suppose two claimants A and B with the same initial number of sons and daughters ($m_A^0 = m_B^0, f_A^0 = f_B^0$) have a son and a daughter ($m_A = m_A^0 + 1$ and $f_B = f_B^0 + 1$) respectively. Then the results in (14) and (15) imply that B has greater incentive than A to have another child.

\[Pr\{\phi_B = 1 \mid m_A, m_B\} > Pr\{\phi_A = 1 \mid m_A, m_B\} \]
\(16 \)

Without loss of generality, I assume that $m_A^0 = m_B^0 = 0$ and $f_A^0 = f_B^0 = 0$ and that probability of a pregnancy resulting in a son or daughter is $1/2$. Then

\[
\text{No. of siblings for average girl} = \frac{\frac{1}{2}Pr\{\phi_A = 1\} + \frac{3}{2}Pr\{\phi_B = 1\}}{1 + \frac{1}{2}Pr\{\phi_A = 1\} + \frac{1}{2}Pr\{\phi_B = 1\}}
\]
\(17 \)

\[
\text{No. of siblings for average boy} = \frac{\frac{3}{2}Pr\{\phi_A = 1\} + \frac{1}{2}Pr\{\phi_B = 1\}}{1 + \frac{1}{2}Pr\{\phi_A = 1\} + \frac{1}{2}Pr\{\phi_B = 1\}}
\]
\(18 \)

\[
\frac{\text{No. of siblings for average girl}}{\text{No. of siblings for average boy}} = \frac{\frac{1}{2}Pr\{\phi_A = 1\} + \frac{3}{2}Pr\{\phi_B = 1\}}{\frac{3}{2}Pr\{\phi_A = 1\} + \frac{1}{2}Pr\{\phi_B = 1\}} > 1
\]
\(19 \)

Similarly, the impact of strategic fertility will imply that the average girl will have more siblings.
than the average boy in the aggregate

\[E(# \text{siblings for average girl}) > E(# \text{siblings for average boy}) \] \hspace{1cm} (20)

An implication of this result is that the average girl will have systematically more siblings than the average boy to share her resources. This means that the average household resources available to her will be lower even if families are otherwise the same. Therefore, even if the claimant does not discriminate among his children on the basis of gender, the average girl will have fewer resources than the average boy, resulting in poorer health and survival outcomes.

4 Data

This section tests the theoretical predictions presented in Section 3. This task requires panel or retrospective data that records land inheritance, family structure and fertility decisions as well as other factors that impact inheritance and fertility decisions. The National Council for Applied Economic Research (NCAER) administered the Additional Rural Incomes Survey (ARIS) in 1970-71 to 4,527 households in 259 villages selected from 17 major states of India. Following up on ARIS, NCAER conducted the Rural Economic and Demographic Survey (REDS) among the same households in 1981-82 and 1998-99 (Foster and Rosenzweig 2003). The first wave of REDS in 1981-82 surveyed 250 villages and 4,979 households, excluding 9 villages in the state of Assam from the ARIS sample due to a violent insurgency. The second wave of REDS in 1998-99 surveyed 7,474 households consisting of surviving households from the 1981-82 wave, separated households residing in the same village and households from 1970-71 that were missing from the 1981-82 wave. In 1998-99, the REDS sample did not include 8 villages that were located in Jammu and Kashmir, where a violent separatist movement perhaps made survey difficult.

I use data from the 1998-99 wave to test the theory presented in Section 3. Previous waves are used to categorize households as either independent, stem or joint families. Thus, households that were added into the survey for the first time in 1998-99 must be excluded since I
cannot determine whether they have been independent since 1981, or are split off members of a joint family household. This leaves 6,203 unique household heads in 1998-99 originating from 4,026 randomly selected households in the 1981-82 survey.

The survey was administered to three groups of respondents – the household heads, every woman in the household between age 15 and 49, and the village head or administrative officer. Household heads answer the economic questionnaire on household migration, formation, division and current structure. They report why the household split away from the previous household, which is important to determine whether that household is independent or part of a larger joint family. The heads also provide detailed information on the source, value and extent of their land holdings, which allows me to observe how the inheritance was divided by the previous household head. Since respondents report dates associated with events such as births, deaths and household division, I can recover an annual retrospective panel dataset from a single wave of observations.

Women in the household between age 15 and 49 answer the demographic questionnaire on pregnancy history, details on each birth, and knowledge and use of contraception. Married women can be linked to their husbands who are either family heads or claimants. This allows me to construct a detailed fertility history that records whether or not the claimant tried to have a child in every period and the number of living children in that period. Thus, even though the REDS data was not collected annually, it has sufficient historical data to recover a panel dataset with respect to the variables of interest for estimating a regression model.

Using the 1998-99 wave of the REDS survey, I construct two datasets. The first is a “bequest dataset” that contains information on the bequests of land received by 1999 heads from their fathers upon the father’s death, and is used to test the strategic bequest hypothesis (equation (7)). The second is a “fertility dataset” that contains information on the fertility choices made by the 1999 claimants when the head is still alive, and is used to test the strategic fertility hypothesis (equation (15)).

Figure 3 shows three generations of a joint family. The bequest dataset is constructed using the first generation as the head, and the second generation as the claimants. The fertility dataset
is constructed using the second generation as the head, and the third generation as the claimants. This configuration allows me to test, using the same families, the implications on the previous generation’s bequest behavior on the subsequent generation’s fertility behavior.

The bequest dataset consists of those land-owning households that were part of a single land-owning unit in 1981-82, but had split into at least two households by 1998 following the head’s death in the interim. Using the demographic questionnaire administered to the head’s wife, I construct a complete fertility history between waves and calculate the number of sons and daughters for each claimant at the time of the head’s death.

Table 1 contains summary statistics from the bequests dataset. The bequest dataset contains 1,266 claimants from 464 heads, with 2.73 claimants per head. The average size of land inheritance is 1.50 hectares per claimant. Note that the average number of sons per claimant is 1.1, which is significantly greater than the average number of daughters (0.9).

Each observation in the fertility dataset consists of a man who is older than 15 years of age. Each man is counted as one among multiple claimants in a joint family where the head is still alive, as the sole claimant in a stem family where the head is still alive, else as the head of a nuclear family in an independent household.

The man’s wife answers questions on her fertility history, which allows me to create a retrospective panel dataset. Schultz (1972) reports that recalled data on pre and post natal child mortality is more reliable closer to the survey period. Therefore, the sample is restricted to the 1992-98 time period which leaves 43,612 claimant-family-year observations in the panel from 5,090 families over seven years.

Claimants might live within the household occupied by the joint family head or set up an

6Note that the dataset does not report intended bequest shares while the head is still alive, only the actual shares once he dies. This might create bias if heads’ preferences change systematically as they get older. However, if the head’s primary objective is to preserve lineage, or if future change in preferences is anticipated by claimants, then I expect this bias to be small.

7These land holdings are consistent with the national average holding of 1.67 hectares in 1981-82, 1.34 hectares in 1991-92 and 1.06 hectares in 2002-03 reported in Govt. of India (2006)

8Recalled fertility data suffers from bias from two main sources (Schultz 1972). The primary reason is that events in the distant past are reported less frequently than events in the recent past. The secondary reason is that women who are reside in the household in the distant past might be different from those who reside in the household in the recent past. Maternal mortality is a significant factor in the high death rate among adult women in South Asia. Therefore, the mortality rate is higher among more fertile women, leading to non-random sample selection if we survey only women who are alive in 1998-99.
independent household. \(r_i \in \{0, 1\} \) represents the claimant’s residence within or outside the head’s household respectively. In the survey, multiple household heads who originated from a single household in the 1981-82 wave might either be independent family heads or claimants in a joint family. This status is based on the circumstances of departure. Fortunately, the REDS dataset collects information on household division. Sons who become household heads after their father’s death are categorized as independent heads, whereas those who split before their father’s death are categorized as part of the joint family. Consistent with observed bequest behavior, split off sons retain status as claimants in their father’s household.

With this assignment, the fertility dataset has 16,162 observations as nuclear families, 7,912 observations in stem families and 19,538 observations in joint families. Table 2 reports the number of claimants in each family type by year. The numbers change over time due to two reasons. First, the sample grows as new claimants attain 15 years of age. Second, the number of joint families decreases and the number of independent families increases as heads die and claimants form their own independent families as a result. Both these events are assumed to occur exogenously.

Table 3 reports the summary statistics for the fertility dataset. Independent couples have on average more children (3.21) than claimants in joint families (2.07). This might reflect the fact that independent heads are older, with average age 43.3 years, compared to claimants in stem (27.6 years) and joint families (31.5 years) and are therefore more likely to have completed their fertility. An important feature of joint families is the significantly worse sex ratio. The ratio of girls to boys is 0.816 in joint families, 0.883 in stem families and 0.969 in independent families. Thus, the data suggests that survival of girls is worse in joint families compared to other family types.\(^9\).

\(^9\)Differences in schooling in Table 3 are consistent with younger couples as claimants in joint families, and relatively older couples as independent heads since formal education has expanded considerably in India over the past few decades (The PROBE Team 1999)
5 Empirical Analysis

The theoretical model of strategic bequests predicts differential impact of bequest behavior on survival and health outcomes for girls compared to boys. Hence, the econometric exercise has two objectives. The first objective is to confirm the strategic bequest motive of equation (7), particularly whether the claimant’s share of a bequest is influenced positively by the number of sons. This establishes the value of sons to claimants in the bequest game. Strategic allocations of household public and private consumption goods are not tested since these are not observed in the REDS data. The second objective is to test strategic fertility behavior predicted in equation (15), i.e. whether a claimant’s fertility in a joint family is impacted by the number of boys and girls that the other claimants have. Note that I do not estimate the impact of strategic fertility on actual survival or health outcomes.

5.1 Strategic bequests

Testing for strategic bequest behavior examines how the share of a claimant inheritance \(\kappa_{ij} \) varies with the number of sons and daughters \((n_{ij}) \) that claimant \(i \) in family \(j \) has at the time of the head’s death compared to the sum of the other claimants’ sons and daughters \((\sum_{k\neq i} n_{kj}) \).

The bequest share \(\kappa_{ij} \) is censored below 0 and above 1. Therefore, I specify the following dual-censored tobit model.

\[
\kappa_{ij} = \alpha_0 + \alpha_1 n_{ij} + \alpha_2 \sum_{k\neq i} n_{kj} + \alpha_3 n_{ij} \ast r_{ij} + \alpha_4 \sum_{k\neq i} n_{kj} \ast r_{ij} + \alpha_5 X_{ij} + \alpha_6 Y_j + \xi_{ij} \tag{21}
\]

where \(n_i = [m_i, f_i]' \) and \(\alpha_1 = [\alpha_{1m}, \alpha_{1f}] \)

\[
\alpha_2 = [\alpha_{2m}, \alpha_{2f}]
\]

\[
\alpha_3 = [\alpha_{3m}, \alpha_{3f}]
\]

\[
\alpha_4 = [\alpha_{4m}, \alpha_{4f}]
\]

To confirm the strategic bequest hypothesis, I expect \(\alpha_{1m} > 0 \) and \(\alpha_{2m} < 0 \) corresponding to the theoretical predictions in equation (7). The coefficients on two interaction terms \(n_{ij} \ast r_{ij} \) and
\[\sum_{k=i} n_{kj} * r_{ij} \]

indicate the marginal impact of the number of sons and daughters for a claimant who has moved away from the head’s household.

This specification must be qualified by controlling for the claimant’s residence choice \(r_{ij} \) and other observed claimant-specific \(X_{ij} \) factors that might impact bequest preferences. \(X_{ij} \) consists of claimant-specific characteristics such as residence choice, age at time of inheritance, education and wife’s education. Also included are dummy variables that indicate whether or not the claimant is a farmer and if the claimant’s wife works outside the home. \(Y_j \) includes family specific factors such as the head’s education, wife’s education and age at death. A dummy variable indicates whether the head was a farmer. Finally, \(\xi_{ij} \) captures unobserved claimant specific factors such as diligence at work or filial relationship with the head, and is assumed to be distributed normally with zero mean.

In the sample of all claimants, the bequest of one claimant is simply the residual share from the other claimants, and not independent across observations. Therefore, I also estimate (21) separately for first-born and other claimants since shares will not be correlated in a sample that includes only first-born claimants.

5.2 Results: Strategic bequests

The results from specification (21), where I test for the influence of family structure on received bequest shares, are presented in Table 4. Coefficients from a Tobit estimation cannot be directly interpreted as percentages. However, since the number of censored observations is small, I expect that the Tobit estimation is a close approximation of OLS, and therefore interpret the coefficients in Table 4 as percentages. Column I reports the results for all claimants within the household, and shows that an additional son increases the claimant’s share of the land bequest by 1 percent. This mirrors the cumulative increase in bequest share for the other claimants when they have an additional son (1.2 percent). The opposite effects of relatively equal magnitude indicate that heads bequest land to claimants with more sons, and that grandsons from different claimants are substitutes for each other. Column I also shows that a claimant’s birth order has a large influence on the bequest share received by a claimant. A claimant increases his bequest
share by 8 percent with an improvement of one position in the birth order.

Note that the claimant’s residence away from the head’s household does not seem to impact his inheritance. While the coefficients α_3, and α_4 are comparable to α_1, and α_2 in magnitude, the associated standard errors are large and the coefficient cannot be statistically distinguished from zero. Hence, it is unlikely that claimants make fertility and residence choices concurrently in order to receive a larger inheritance. From an econometric perspective, this suggests that the results from a probit estimation of fertility choice in equation (5.4.1) should be similar to the joint estimation of fertility and residence choice (section B).

Columns II and III repeat the estimation with subsamples of claimants who are first and higher in the birth order, respectively. The coefficients for α_{1m} and α_{4m} are both positive and significant, indicating that an additional son adds approximately 2 percent to a claimant’s bequest. Interestingly, heads seem to value the daughters of claimants with high birth order, although not as much as sons.

The dataset does not report the value of land inherited before the reporting period. However, data on the value of land purchased during the reporting period is available. I use this information and calculate the value of the total bequest distributed by the household head as Rs. 2.4 million, calculated in 1999.\(^{10}\) Thus, a 2 percent increase in bequest share implies that the value of an additional son is Rs. 47,000 to the average claimant in the bequest dataset.

These results establish that the number of own and other claimants sons are an important factor determining the bequest received by the claimant. Thus, claimants have an important incentive to maximize the number of sons they have if they live in a joint family where the head is still alive and owns land.

5.3 Strategic fertility

If the strategic bequest motive in the previous section is confirmed, then I propose three tests of strategic fertility.

\(^{10}\)Rs. 43.19 = US$ 1 on 07/07/08.
5.3.1 Within-family fertility

The probability that a claimant in a joint family tries to have another child will be positively impacted by the number of boys that the other claimants have, corresponding to the theoretical prediction in equation (15). The other claimants’ daughters are neither future heirs in the family lineage, nor direct economic costs or benefits to the claimant. Hence, they ought not to have a significant impact on claimant’s own fertility. To test these two propositions, I specify a probit model with a binary outcome ϕ that is 1 if a claimant i in joint family j reports a pregnancy in year t.

$$
\phi_{ijt} = \beta_0 + \beta_1 n_{ijt} + \beta_2 \sum_{k \neq i} n_{kjt} + \beta_3 X_{ijt} + \beta_4 V_{ij} + \beta_{10} r_{ijt} * n_{ijt} + \beta_{5} r_{ijt} * \sum_{k \neq i} n_{kjt} + \text{year}_t + \mu_j + \epsilon_{ijt}
$$

(22)

where $\beta_1 = [\beta_{1m} \beta_{1f}]$

$\beta_2 = [\beta_{2m} \beta_{2f}]$

$\beta_5 = [\beta_{5m} \beta_{5f}]$

$\beta_6 = [\beta_{6m} \beta_{6f}]$

In this model, the claimant reports a pregnancy based on the number of sons and daughters (n_{ijt}) he already has. I expect a negative relationship between the number of children and the probability that the claimant will try for one more, i.e. $\beta_{1m} < 0$ and $\beta_{1f} < 0$. Since sons have value in the bequest game, equation (14) predicts that $\beta_{1m} < \beta_{1f}$. Strategic fertility is identified by the components of β_2. In particular, equation (15) predicts that $\beta_{2m} > 0$ and is significant, but β_{2f} is not significant. The coefficient β_5 indicates the impact of the claimant’s own sons and daughters if he is living in a split-off household, whereas β_6 indicates the impact of the other claimants sons and daughters when the claimant is split off.

One threat to this specification is from omitted variables that might impact fertility. Therefore, I control for observable time-varying characteristics (X_{ijt}) of the claimant and his partner that impact fertility, such as marriage, health status from a previous pregnancy, as well time-
invariant characteristics \((V_{ij})\) such as years of schooling, and participation in the formal work force.

I include year dummy variables to account for factors that impact fertility across all claimants and families, such as availability of food due to variations in monsoon rainfall. \(\mu_j\) represents unobserved family specific factors and \(\epsilon_{ijt}\) represents unobserved individual specific factors that might impact fertility.

A possible shortcoming of this specification is that fertility decisions might be influenced by factors that are specific to the joint family, rather than just the claimant. To check for this, I exploit the panel aspect of the dataset and specify a probit random effects model.

\[
\phi_{ijt} = \beta_0 + \beta_1 n_{ijt} + \beta_2 \sum_{k \neq i} n_{kjt} + \beta_3 X_{ijt} + \beta_4 V_{ijt} + \beta_{10} r_{ijt} * n_{ijt} + \beta_{15} r_{ijt} * \sum_{k \neq i} n_{kjt} + \text{family}_{jt} + \text{year}_t + \epsilon_{ijt} \tag{23}
\]

In this specification, \(\text{family}_{jt}\) is a random variable that captures possibly omitted joint family characteristics that may be constant over time but vary between claimants, and others that may be fixed between claimants but vary over time. The parameters of interest are the same as equation (22).

5.3.2 Land ownership

The second test uses Bernheim, Shleifer and Summer’s (1985) prediction that the strategic bequest game is impacted by the size of the bequest. Correspondingly, I test whether strategic fertility is influenced by the presence of a bequest. If the household head in a joint family owns no land that he can bequest, then claimants have no incentive for strategic fertility. In this case, neither the other claimants’ sons nor daughter will be significant in the claimants’ fertility
decision. Indexing \(l \in [0, 1] \), I estimate the following probit model.

\[
\phi_{ijt} = \sum_l \gamma'_0 l^i + \sum_l \gamma'_1 (l^i \ast n_{ijt}) + \sum_l \gamma'_2 (l^i \ast \sum_{k \neq i} n_{kjt}) + \sum_l \gamma'_3 (l^i \ast X_{ijt}) + \sum_l \gamma'_4 (l^i \ast V_{ij}) + \sum_l \gamma'_5 (l^i \ast r_{ijt} \ast n_{ijt}) + \sum_l \gamma'_6 (l^i \ast \sum_{k \neq i} (n_{kjt}^* \ast \text{year}_t)) + \mu_j + \epsilon_{ijt}
\]

where \(\gamma'_1 = [\gamma'_{1m} \gamma'_{1f}] \)

\(\gamma'_2 = [\gamma'_{2m} \gamma'_{2f}] \)

\(\gamma'_3 = [\gamma'_{3m} \gamma'_{3f}] \)

and \(\gamma'_6 = [\gamma'_{6m} \gamma'_{6f}] \)

\(I^i \) is an indicator variable such that \(I^0 = 1 \) if the head does not own any land and \(I^1 = 1 \) if the head owns land. The parameters of interest are \(\gamma'_{2m} \), \(\gamma'_{2f} \), \(\gamma'_{1m} \) and \(\gamma'_{1f} \). If strategic fertility operates only when the head has land that can be bequeathed but not otherwise, then I expect that \(\gamma'_{2m} > 0 \) and significant but \(\gamma'_{2f} \) is not significant. \(\gamma'_{1f} \) should both be insignificant. As in the previous section, I also estimate a family random effects model and report those results.

5.3.3 Head’s death

The final test employs the death of the previous head during the period of our study as a natural experiment to observe fertility behavior within the same family. Assuming that the head’s death is not associated with fertility behavior, selection into the sample is random for the purposes of this test. Within the sample, other claimants’ sons ought to positively impact a claimant’s fertility only while the head is still alive and has not distributed the bequest. Once the head dies and distributes the bequest, claimants have no further incentive for strategic fertility. The following probit model tests this proposition.

\[
\phi_{ijt} = \sum_d \gamma'_0 d^i + \sum_d \gamma'_1 (d^i \ast n_{ijt}) + \sum_d \gamma'_2 (d^i \ast \sum_{k \neq i} n_{kjt}) + \sum_d \gamma'_3 (d^i \ast X_{ijt}) + \sum_d \gamma'_4 (d^i \ast V_{ij}) + \sum_d (d^i \ast \text{year}_t) + \mu_j + \epsilon_{ijt}
\]
where \(d \in [0, 1] \). \(I^0 = 1 \) and \(I^1 = 0 \) before the head dies and \(I^0 = 0 \) and \(I^1 = 1 \) afterwards. The parameters of interest are \(\gamma_{2m}^0, \gamma_{2f}^0, \gamma_{2m}^1 \) and \(\gamma_{2f}^1 \). If strategic fertility is significant before the head’s death but not so afterwards, then I expect that \(\gamma_{2m}^0 > 0 \) and significant while \(\gamma_{2m}^1 \) is not significant. \(\gamma_{2f}^0 \) and \(\gamma_{2f}^1 \) ought not to be significant since the other claimants’ daughters are not factors in the claimant’s fertility decision.

5.4 Results: Strategic fertility

5.4.1 Within-family fertility

Table 5 presents the results of the within-family test of strategic fertility specified in section 5.3.1. In the within-family test, the strategic fertility model predicts that the number of other claimants’ boys has a positive and significant impact on the likelihood of reporting a pregnancy, i.e. \(\beta_{2m} > 0 \). Simultaneously, the other claimants’ girls should have a small and statistically insignificant impact on the claimant’s fertility, i.e. \(\beta_{2f} \) is small. Column I reports marginal-effects probit estimates from the specification in equation (22). As expected, the number of own sons and daughters has a large, negative and statistically significant impact on a claimant’s fertility. The probability of the claimant’s fertility decreases by 6.5 percent with an additional son, and by 2.2 percent with an additional daughter. In contrast, an additional son for the other claimants increases the probability of a pregnancy by 0.85 percent in a year, a result that is significant at the 1 percent level. The other claimants’ daughters have a very small impact on the claimant’s fertility (-0.005) that is statistically indistinguishable from the null. This result establishes the basic validity of the strategic fertility hypothesis.

I also examine whether fertility is impacted by moving away from the head’s household before his death. The coefficients on the interacted variables in Column I show that moving away has no particular impact on strategic fertility.

Column II in Table 5 reports the results on the random effects probit model specified in equation (23). This model includes controls for possibly omitted joint family characteristics that may be constant over time but vary between claimants, and others that may be fixed be-
tween claimants but vary over time. The results from this model are not significantly different from those in column I, though they suggest a possible role for own sons in reducing fertility after the claimant has split away from the head’s household. In addition, the other claimants’ daughters seem to be statistically different from the null at the 10% level. However, since the associated point estimate is the smaller than the impact of either own children or the other claimants’ sons, the validity of the strategic fertility hypothesis is maintained.

Table 6 presents the estimates for the marginal effect on own fertility while fixing the other claimants’ sons. The first row of coefficients indicates that the value of an additional son for a claimant is larger when the other claimants have more sons, than when the other claimants have fewer sons. This is consistent with the theoretical prediction that gain in bequest share is greater when the other claimants have more sons than when they have fewer sons.

The third row of coefficients in Table 6 confirms the earlier result that a claimant is more likely to report a pregnancy when the other claimants have more sons. I cannot conclude that this result is driven by any particular number of other claimants’ sons although the effect is greater when the other claimants have more sons confirming the theoretical prediction in the previous paragraph.

5.4.2 Land ownership

Table 7 presents the results of the test of strategic fertility specified in section 5.3.2. Column I reports results from marginal effects probit, and Column II from random effects probit models respectively. In each column, the set of coefficients under ‘A’ represent claimants in joint families where the head does not own any land. The coefficients under ‘B’ represent claimants in joint families with a land-owning head.

The basic result corresponding to specification (24) is that while the claimant’s own family structure is a significant determinant of fertility in joint families that do not own land, both own family structure as well as other claimants’ boys are significant in land-owning families. The point estimates imply that an additional son for other claimants increases the fertility rate by 0.82 percent in land owning families. This estimate is close to the 0.85 percent increase in the
fertility rate reported in section 5.4.1 for the complete sample, suggesting that strategic fertility is primarily a phenomenon among relatively wealthier, land-owning families.

5.4.3 Head’s death

Section 5.3.3 specifies that a claimant’s fertility ought to be dependent on other claimants’ family structure only before the head’s death and distribution of the bequest. Once the claimant has received his bequest, he will no longer participate in the strategic fertility game. Table 8 reports the results of this test from a marginal effects probit model. The coefficients under ‘A’ represent the impact of family structure before the head’s death, and the coefficients in ‘B’ represent the impact after the head’s death.

As expected, the claimant’s own sons impact fertility significantly before and after the head’s death, but the claimant’s own daughters and the other claimants’ sons impact fertility only before the head’s death. Unusually, the other claimants’ daughters have a negative impact on fertility before the head’s death, although it is not clear why this is the case. The point estimates imply that an additional son decreases the probability of reporting a pregnancy by 4.6 percent before the head’s death, but by 24 percent after the head’s death. One reason for this large difference is that the claimant will have higher order births after head’s death, and thus the marginal reduction in the probability of an additional pregnancy is greater. An additional son for the other claimants increases fertility by 1.2 percent, although the coefficient is significant before the head’s death and not afterwards.

A concern with the estimates presented in this section is that a regressor is possibly endogenous. Appendix B shows that the results are robust to endogeneity of residence choice.

5.5 Implications of strategic fertility

The results from the previous section confirm that land bequests in joint families motivate strategic fertility behavior. This behavior implies that a claimant will stop having children sooner when he has many boys rather than when he has many girls. However, as previously
discussed in Section 3.2, this result by itself does not guarantee differences in outcomes for girls and boys. For this, I propose that the differences in fertility responses implies that the average girl in the population lives in a family that has systematically more children than the average boy. Thus, even without differences in parents’ behavior towards children of different gender or in resource allocations, the average girl will receive smaller share of resources than the average boy, explaining poorer outcomes.

To see this in the fertility dataset, I check whether the average girl indeed has more siblings than the average boy. In the following equations, f_{ij} and m_{ij} is the number of sons and daughters for claimant i in family j. Correspondingly, s_{ij} is the number of siblings for any one of that claimant’s children. \bar{s}_f and \bar{s}_m represent the number of siblings for the average girl and boy respectively.

$$\bar{s}_f = \frac{\sum_{i,j} (s_{ij} \times f_{ij})}{\sum_{i,j} f_{ij}} \quad \text{and} \quad \bar{s}_m = \frac{\sum_{i,j} (s_{ij} \times m_{ij})}{\sum_{i,j} m_{ij}}$$ \hspace{1cm} (26)

The excess number of siblings for the average girl is $\bar{s}_f - \bar{s}_m$. I expect this to be positive, and larger for joint families with multiple claimants than for stem families that have similar observed characteristics (see Table 3), but only a single claimant and hence no “strategic fertility”.

Table 10 calculates the sibling statistics for stem and joint families. The number of siblings for the average girl (\bar{s}_f) in a joint family is 2.761 whereas the number of siblings for the average boy in a joint family is 2.481. Hence, the average girl has 0.280 excess siblings compared to the average boy in joint families. Contrast this with 0.156 excess siblings for the average girl in stem families.

The difference in the excess siblings between stem and joint families is driven by fewer number of siblings for the average boy in a joint family. The number of siblings for the average girl in a stem family (2.757) is close to the number of siblings for the average girl in a joint family (2.761). However, the difference in the number of siblings for the average boy in a
This is consistent with the theory presented in Section 3 that predicts that a joint family with many boys is more likely declines in fertility compared to similar stem families, or families with many girls in either family type.

Thus, the results in this section confirm that girls born in joint families live in households that are systematically larger than where boys are born. The comparison with stem families suggests that this is driven by the specific strategic fertility behavior observed in joint families.

6 Discussion

This paper demonstrated a mechanism by which bequest behavior in land-owning joint families in rural India impacts gender differences in health and survival outcomes. The theoretical model showed that in a patrilocal society, heads will prefer to bequest land to claimants with more sons in order to preserve land within the family in future generations. This motivates a “race for boys” among claimants, leading to family structures where the average girl has more siblings than the average boy. Even without overt discrimination in allocation, this result implies fewer resources for the average girl. Thus, fairly benign behavior that manifests itself in differential stopping rules has the potential to explain large and near universal differences in outcomes more effectively than sex-selective foeticide and infanticide.

I estimated both the strategic bequest and strategic fertility hypotheses. I confirmed that heads prefer claimants with more sons, and as a result claimants’ fertility behavior responds strategically to the family structures of the other claimants. As expected, this result is more pronounced in land owning families relative to landless families, offering a possible explanation why sex differences are larger in relatively prosperous families. Strategic fertility is also more salient before the head’s death and distribution of the bequest, relative to families where the inheritance has been received. Although estimating the precise impact of this behavior on sex

\[11\text{Note that the excess siblings for the average girl is not a trivial outcome of a sex ratio skewed against girls. If girls and boys are randomly assigned to households, then the average girl will have the same number of siblings as the average boy regardless of the sex ratio.}\]
differences in health and survival outcomes awaits advances in data collection, these results provide a comprehensive explanation why such differences are greater in joint families than other family structures.

These results should be read with two caveats. First, strategic fertility does not rule out overtly discriminatory behavior by claimants against girls. Bequests might motivate significant foeticide, infanticide or differences in resource allocations that I do not estimate in the empirical analysis. Moreover, sex biased might be motivated for reasons other than bequests. The impact of strategic bequests and fertility are congruent to these reasons, not instead of them.

Second, my model relies explicitly on features of land as a productive agricultural asset as well as the social institution of women leaving their parents’ family at the time of marriage. Therefore, I do not address gender differences in societies where land is not so central to the production process, or that have alternative types of social institutions.

The model presented in this paper has a number of assumptions and simplifications due to constraints in the data as well as practical considerations. The dynamics of family structure in developing countries offer a rich, yet perhaps little explored topic of study. The most salient assumption was to ignore farm production, labor supply, consumption, savings, marriage and residence decisions that are also part of the economics of the joint family household. This has two major implications. First, I cannot comment on the dynamics of fertility behavior in independent households that do not have adult claimants, and hence different sets of labor force participation and consumption decisions than stem and joint family households. Second, I cannot perform simulations that predict the impact of specific policies on gender outcomes.

Relaxing these assumptions requires the development of a full-scale model of intra-family bargaining with forward-looking agents that extends the two-agent bargaining model of Chiappori (1992) to a more elaborate family structure. While estimating all the structural parameters of such a model awaits advances in data collection, elements of the full-scale model can be tested using reduced form techniques and available time use data. For example, the value of a son as a future heir might imply that the birth of a boy increases consumption of leisure for a claimant and his wife. From the perspective of marriage, the status of daughters as residual
claimants who inherit land only when the head has no sons implies that women with no brothers would be attractive in the marriage market.

However, from a policy perspective, the results do underscore the influence of differential bequest behavior on even apparently benign fertility behavior. Legal changes in the 1980s and 90s in a number of southern states granted daughters inheritance rights to agricultural land if the head dies without a will. Since then, these states have been at the forefront of large advances in female survival and health. A recent amendment to the Hindu Succession Act (2005) extended these rights nationally. This ought to increase the bargaining power of daughters in the bequest “game” as they are regarded as claimants in their own right. Finally, land ownership is a key driver of strategic fertility behavior, which suggests that the shift towards other forms of bequests, such as investments in professional education, might alleviate a major source of differential gender outcomes.
References

Appendices

A Intra-household allocation

Suppose \(\eta(m) \) represents the distribution of power across different claimants in the joint family such that \(\sum_i \eta_i(m) = 1 \). If the birth of a son increases a claimant’s power within the joint family, then \(\frac{\partial \eta_i(m)}{\partial m_i} > 0 \). Thus, in a collective model of efficient intra-household allocation of private and public goods, the household head faces the following optimization problem.

\[
\max_{\mu_1, \ldots, \mu_N, z} \sum_i \eta_i(m) u_i(\mu_i, X, z) \tag{27}
\]

such that \(z + \sum_i \mu_i X = I \) and \(\sum_i \mu_i = 1 \) \(\tag{28} \)

Then the first order conditions yield

\[
\eta_i(m) \frac{\partial u_i}{\partial \mu_i} = \eta_{-i}(m) \frac{\partial u_{-i}}{\partial \mu_{-i}} \tag{29}
\]

or \(\frac{\eta_i(m)}{\eta_{-i}(m)} = \frac{MU_{-i}}{MU_i} \) \(\tag{30} \)

Assuming that claimants exhibit declining marginal utility in consumption of private goods, this condition implies that an increase in \(\eta_i(m) \) due to the birth of a son will result in an increase in the allocation \(\mu_i \) for the claimant, or

\[
\frac{\partial \mu_i}{\partial m_i} \geq 0, \quad \frac{\partial \mu_i}{\partial m_{-i}} \leq 0 \tag{31}
\]
B Robustness check

One concern with the tests of strategic fertility presented in section 5.4 is the possibly endogenous determination of residence choice with fertility. As outlined in Section 2.2, claimants are more likely to leave the joint family’s household either when public good provision or the possible share in bequest share declines. The results in Section 5.2 suggest that a claimant’s residence does not significantly impact his share of the bequest. I check this result by estimating a bivariate normal probit model for the within-family and land ownership tests. The parameters of interest and associated theoretical predictions are the same as in equations (22) and (24) respectively.

Column I in table 9 reports the results from joint determination of fertility and residence choice in the within family test presented in section 5.3.1. Column II reports the results from joint determination of fertility and residence choice in the land ownership test (section 24), with coefficients under ‘A’ representing claimants in joint families where the head does not own any land and coefficients under ‘B’ representing claimants in joint families with a land-owning head.

The results from this model are not materially different from those in reported in Tables 5 and 7, confirming that residence choice is not a significant factor in the strategic fertility game.
Figure 1: Importance of land vs. Sex ratio
Source: Govt. of India (1998) and Census of India (2001).
Figure 2: Agricultural income vs. Sex ratio
Source: Govt. of India (1998) and Census of India (2001).
Figure 3: Three generation family
Table 1: **Summary statistics: Bequests dataset**

<table>
<thead>
<tr>
<th></th>
<th>Mean (or percent)</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of heads</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>Number of claimants</td>
<td>1,266</td>
<td></td>
</tr>
<tr>
<td>Claimants per head</td>
<td>2.73</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Claimant’s characteristics

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>33.9 years</td>
<td>9.8</td>
</tr>
<tr>
<td>Size of land inherited</td>
<td>1.50 hectares</td>
<td>1.66</td>
</tr>
<tr>
<td>Number of sons</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Number of daughters</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Married</td>
<td>94.6%</td>
<td>0.23</td>
</tr>
<tr>
<td>Claimant’s schooling</td>
<td>5.8 years</td>
<td>4.9</td>
</tr>
<tr>
<td>Wife’s schooling</td>
<td>2.9 years</td>
<td>3.9</td>
</tr>
<tr>
<td>Occupation as farmer</td>
<td>72.3%</td>
<td>0.45</td>
</tr>
<tr>
<td>Wife works outside home</td>
<td>30.6%</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Notes: Variables as reported at time of inheritance.
Rs. 43.19 = US$ 1 on 07/07/08.
Table 2: **Claimants in fertility dataset**

<table>
<thead>
<tr>
<th>Year</th>
<th>Independent</th>
<th>Stem</th>
<th>Joint</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>2,120</td>
<td>1,092</td>
<td>2,934</td>
<td>6,146</td>
</tr>
<tr>
<td>1993</td>
<td>2,169</td>
<td>1,115</td>
<td>2,928</td>
<td>6,212</td>
</tr>
<tr>
<td>1994</td>
<td>2,227</td>
<td>1,126</td>
<td>2,877</td>
<td>6,230</td>
</tr>
<tr>
<td>1995</td>
<td>2,310</td>
<td>1,142</td>
<td>2,800</td>
<td>6,252</td>
</tr>
<tr>
<td>1996</td>
<td>2,385</td>
<td>1,145</td>
<td>2,726</td>
<td>6,256</td>
</tr>
<tr>
<td>1997</td>
<td>2,453</td>
<td>1,150</td>
<td>2,655</td>
<td>6,258</td>
</tr>
<tr>
<td>1998</td>
<td>2,498</td>
<td>1,142</td>
<td>2,618</td>
<td>6,258</td>
</tr>
<tr>
<td>Total</td>
<td>16,162</td>
<td>7,912</td>
<td>19,538</td>
<td>43,612</td>
</tr>
<tr>
<td>Share of Total</td>
<td>37.1%</td>
<td>18.1%</td>
<td>44.8%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 3: **Summary statistics: Fertility dataset**

<table>
<thead>
<tr>
<th></th>
<th>Independent</th>
<th>Stem</th>
<th>Joint</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>43.3</td>
<td>27.6</td>
<td>31.5</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td>(12.4)</td>
<td>(7.6)</td>
<td>(8.9)</td>
<td>(12.0)</td>
</tr>
<tr>
<td>N (claimant-family-year)</td>
<td>16,162</td>
<td>7,912</td>
<td>19,538</td>
<td>43,612</td>
</tr>
<tr>
<td>Boys per claimant</td>
<td>1.63</td>
<td>1.00</td>
<td>1.14</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>(1.21)</td>
<td>(1.18)</td>
<td>(1.15)</td>
<td>(1.21)</td>
</tr>
<tr>
<td>Girls per claimant</td>
<td>1.58</td>
<td>0.88</td>
<td>0.93</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>(1.39)</td>
<td>(1.14)</td>
<td>(1.13)</td>
<td>(1.28)</td>
</tr>
<tr>
<td>Sex ratio (girls/boys)</td>
<td>0.97</td>
<td>0.88</td>
<td>0.82</td>
<td>0.90</td>
</tr>
<tr>
<td>Other claimants’ boys</td>
<td></td>
<td></td>
<td></td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.30)</td>
</tr>
<tr>
<td>Other claimants’ girls</td>
<td></td>
<td></td>
<td></td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.04)</td>
</tr>
<tr>
<td>Split from head’s household</td>
<td></td>
<td></td>
<td></td>
<td>28%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.45)</td>
</tr>
<tr>
<td>Married</td>
<td>86%</td>
<td>78%</td>
<td>83%</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.42)</td>
<td>(0.38)</td>
<td>(0.37)</td>
</tr>
<tr>
<td>Claimant’s schooling</td>
<td>5.5 years</td>
<td>7.1 years</td>
<td>6.8 years</td>
<td>6.4 years</td>
</tr>
<tr>
<td></td>
<td>(4.48)</td>
<td>(4.93)</td>
<td>(4.91)</td>
<td>(4.95)</td>
</tr>
<tr>
<td>Age at headship</td>
<td>32.0 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10.15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman working outside</td>
<td>35%</td>
<td>29%</td>
<td>27%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>(0.64)</td>
<td>(0.63)</td>
<td>(0.53)</td>
<td>(0.59)</td>
</tr>
<tr>
<td>Woman’s schooling</td>
<td>3.1 years</td>
<td>4.7 years</td>
<td>3.8 years</td>
<td>3.7 years</td>
</tr>
<tr>
<td></td>
<td>(4.15)</td>
<td>(4.73)</td>
<td>(4.41)</td>
<td>(4.42)</td>
</tr>
</tbody>
</table>

Note: Value in parentheses is standard deviation.
Table 4: Strategic bequest results

<table>
<thead>
<tr>
<th></th>
<th>(I)</th>
<th></th>
<th>(II)</th>
<th></th>
<th>(III)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of own sons</td>
<td>0.010 ** (0.005)</td>
<td></td>
<td>0.023 *** (0.008)</td>
<td></td>
<td>0.018 *** (0.007)</td>
<td></td>
</tr>
<tr>
<td>Number of own daughters</td>
<td>0.001 (0.005)</td>
<td></td>
<td>0.006 (0.008)</td>
<td></td>
<td>0.010 (0.007)</td>
<td></td>
</tr>
<tr>
<td>Other claimants’ sons</td>
<td>-0.012 *** (0.003)</td>
<td></td>
<td>-0.021 *** (0.007)</td>
<td></td>
<td>-0.018 *** (0.004)</td>
<td></td>
</tr>
<tr>
<td>Other claimants’ daughters</td>
<td>-0.004 (0.003)</td>
<td></td>
<td>-0.017 *** (0.007)</td>
<td></td>
<td>-0.009 ** (0.004)</td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td>-0.020 (0.019)</td>
<td></td>
<td>0.000 (0.028)</td>
<td></td>
<td>-0.016 (0.028)</td>
<td></td>
</tr>
<tr>
<td>Number of own sons * Split</td>
<td>0.003 (0.009)</td>
<td></td>
<td>-0.003 (0.015)</td>
<td></td>
<td>0.001 (0.013)</td>
<td></td>
</tr>
<tr>
<td>Number of own daughters * Split</td>
<td>0.014 (0.009)</td>
<td></td>
<td>0.008 (0.014)</td>
<td></td>
<td>0.026 * (0.015)</td>
<td></td>
</tr>
<tr>
<td>Other claimants’ sons * Split</td>
<td>-0.006 (0.006)</td>
<td></td>
<td>-0.008 (0.013)</td>
<td></td>
<td>-0.005 (0.007)</td>
<td></td>
</tr>
<tr>
<td>Other claimants’ daughters * Split</td>
<td>0.001 (0.006)</td>
<td></td>
<td>0.009 (0.014)</td>
<td></td>
<td>-0.001 (0.007)</td>
<td></td>
</tr>
<tr>
<td>Birth Order</td>
<td>-0.080 *** (0.006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Left censored observations: 35 8 27
Uncensored observations: 1019 362 657
Right censored observations: 13 6 7

Notes: Double censored random effects tobit model. Standard errors are clustered at joint family level.
*** indicates coefficients are significant at 1% level. ** indicates coefficients are significant at 5% level.
* indicates coefficients are significant at 10% level.
Table 5: Results of within family test

<table>
<thead>
<tr>
<th></th>
<th>(I)</th>
<th>(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sons</td>
<td>-0.065 ***</td>
<td>-0.339 ***</td>
</tr>
<tr>
<td></td>
<td>(.007)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Number of daughters</td>
<td>-0.022 ***</td>
<td>-0.130 ***</td>
</tr>
<tr>
<td></td>
<td>(.005)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Other claimants’ sons</td>
<td>0.008 ***</td>
<td>0.040 ***</td>
</tr>
<tr>
<td></td>
<td>(.003)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Other claimants’ daughters</td>
<td>-0.005</td>
<td>-0.028 *</td>
</tr>
<tr>
<td></td>
<td>(.003)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Number of sons * Split</td>
<td>-0.046 *</td>
<td>-0.240 ***</td>
</tr>
<tr>
<td></td>
<td>(.026)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>Number of daughters * Split</td>
<td>-0.020</td>
<td>-0.098</td>
</tr>
<tr>
<td></td>
<td>(.017)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>Other claimants’ sons * Split</td>
<td>-0.001</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(.009)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Other claimants’ daughters * Split</td>
<td>0.015</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>-0.124</td>
</tr>
</tbody>
</table>

Notes:
Values in parentheses are standard errors.
Standard errors are clustered at joint family level.
*** indicates coefficients are significant at 1% level.
* indicates coefficients are significant at 10% level.
Number of observations = 7,522 in 599 joint families.
<table>
<thead>
<tr>
<th>Other claimants’ sons</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of own sons</td>
<td>-0.060 ***</td>
<td>-0.063 ***</td>
<td>-0.066 ***</td>
<td>-0.069 ***</td>
<td>-0.072 ***</td>
<td>-0.075 ***</td>
<td>-0.078 ***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Number of own daughters</td>
<td>-0.020 ***</td>
<td>-0.021 ***</td>
<td>-0.022 ***</td>
<td>-0.023 ***</td>
<td>-0.024 ***</td>
<td>-0.025 ***</td>
<td>-0.026 ***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Other claimants’ sons</td>
<td>0.008 ***</td>
<td>0.008 ***</td>
<td>0.009 ***</td>
<td>0.009 ***</td>
<td>0.009 ***</td>
<td>0.010 ***</td>
<td>0.010 ***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Other claimants’ daughters</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Number of own sons * Split</td>
<td>-0.042 *</td>
<td>-0.044 *</td>
<td>-0.046 *</td>
<td>-0.049 *</td>
<td>-0.051 *</td>
<td>-0.053 *</td>
<td>-0.055 *</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.023)</td>
<td>(0.024)</td>
<td>(0.025)</td>
<td>(0.026)</td>
<td>(0.027)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>Number of own daughters * Split</td>
<td>-0.019</td>
<td>-0.020</td>
<td>-0.021</td>
<td>-0.021</td>
<td>-0.022</td>
<td>-0.023</td>
<td>-0.024</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.017)</td>
<td>(0.018)</td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Other claimants’ sons * Split</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Other claimants’ daughters * Split</td>
<td>0.014</td>
<td>0.015</td>
<td>0.016</td>
<td>0.016</td>
<td>0.017</td>
<td>0.018</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.013)</td>
</tr>
</tbody>
</table>

Notes: Values in parentheses are standard errors and are clustered at joint family level. *** and * indicate coefficients are significant at 1% and 10% level respectively. Coefficients for marginal effects evaluated at the means of the independent variables. Marginal effects for Other claimants’ sons > 6 not shown. Number of observations = 7,522 in 599 joint families.
Table 7: Results of land ownership test

<table>
<thead>
<tr>
<th></th>
<th>(I)</th>
<th>(II)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Number of sons</td>
<td>-0.092 ***</td>
<td>-0.064 ***</td>
<td>-0.481 ***</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.007)</td>
<td>(0.164)</td>
</tr>
<tr>
<td>Number of daughters</td>
<td>-0.021</td>
<td>-0.022 ***</td>
<td>-0.145</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.005)</td>
<td>(0.153)</td>
</tr>
<tr>
<td>Other claimants’ sons</td>
<td>0.023</td>
<td>0.008 ***</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.003)</td>
<td>(0.113)</td>
</tr>
<tr>
<td>Other claimants’ daughters</td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.004)</td>
<td>(0.197)</td>
</tr>
<tr>
<td>Number of sons * Split</td>
<td>0.027</td>
<td>-0.057 **</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.026)</td>
<td>(0.278)</td>
</tr>
<tr>
<td>Number of daughters * Split</td>
<td>-0.041</td>
<td>-0.022</td>
<td>-0.236</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.019)</td>
<td>(0.292)</td>
</tr>
<tr>
<td>Other claimants’ sons * Split</td>
<td>0.006</td>
<td>-0.001</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.009)</td>
<td>(0.184)</td>
</tr>
<tr>
<td>Other claimants’ daughters * Split</td>
<td>-0.015</td>
<td>0.017</td>
<td>-0.035</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.011)</td>
<td>(0.271)</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td>-0.145</td>
</tr>
</tbody>
</table>

Notes: Values in parentheses are standard errors. Standard errors are clustered at joint family level. *** indicates coefficients significant at 1% level. ** indicates coefficients significant at 5% level. Number of observations = 7,522 in 599 joint families.
Table 8: Results of head’s death test

Dependent variable: Reported pregnancy

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sons</td>
<td>-0.046 **</td>
<td>-0.240 **</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.093)</td>
</tr>
<tr>
<td>Number of daughters</td>
<td>-0.030 ***</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Other claimants’ sons</td>
<td>0.012 **</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Other claimants’ daughters</td>
<td>-0.014 **</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.027)</td>
</tr>
</tbody>
</table>

Notes:
- Values in parentheses are standard errors.
- Standard errors are clustered at joint family level.
- *** indicates coefficients are significant at 1% level.
- ** indicates coefficients are significant at 5% level.
- Number of observations = 768 in 125 joint families.
Table 9: **Results of bivariate probit estimation**

<table>
<thead>
<tr>
<th></th>
<th>(I)</th>
<th></th>
<th>(II)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θ</td>
<td>(SE)</td>
<td>θ</td>
<td>(SE)</td>
</tr>
<tr>
<td>Number of sons</td>
<td>-0.333***</td>
<td>(0.033)</td>
<td>-0.365**</td>
<td>(0.155)</td>
</tr>
<tr>
<td>Number of daughters</td>
<td>-0.113***</td>
<td>(0.024)</td>
<td>-0.139</td>
<td>(0.128)</td>
</tr>
<tr>
<td>Other claimants’ sons</td>
<td>0.038***</td>
<td>(0.013)</td>
<td>0.083</td>
<td>(0.067)</td>
</tr>
<tr>
<td>Other claimants’ daughters</td>
<td>-0.016</td>
<td>(0.016)</td>
<td>-0.022</td>
<td>(0.075)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.166</td>
<td></td>
<td>-0.214</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Values in parentheses are standard errors.
Standard errors are clustered at joint family level.
*** indicates coefficients are significant at 1% level.
** indicates coefficients are significant at 5% level.
Number of observations = 7,522 in 599 joint families.
Table 10: *Excess siblings for average girl*

<table>
<thead>
<tr>
<th>Household type</th>
<th>Number of boys</th>
<th>Number of girls</th>
<th>Siblings per girl</th>
<th>Siblings per boy</th>
<th>Excess siblings per girl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>3,771</td>
<td>3,611</td>
<td>3.552</td>
<td>3.193</td>
<td>0.359</td>
</tr>
<tr>
<td>Stem</td>
<td>1,259</td>
<td>1,113</td>
<td>2.757</td>
<td>2.600</td>
<td>0.156</td>
</tr>
<tr>
<td>Joint</td>
<td>3,179</td>
<td>2,666</td>
<td>2.761</td>
<td>2.481</td>
<td>0.280</td>
</tr>
</tbody>
</table>