Capital Flows between Rich and Poor Countries

Francesco Caselli

Summer School 2005

Lucas (1990)

- Big differences in y.
- Suppose they are due to differences in k (physical only).
- Then MPK differences must be huge
 - e.g. with Cobb-Douglas:

$$y=k^eta$$
 $MPK=eta k^{eta-1}=eta y^{rac{eta-1}{eta}}$

With $\beta = 0.4$ implies factor of 58 between India and US. How can this be?

Explanation L1: Human Capital

Suppose

$$y = k^{\beta} h^{1-\beta}$$

$$MPK = \beta k^{\beta - 1} h^{1 - \beta} = \beta y^{\frac{\beta - 1}{\beta}} h^{\frac{1 - \beta}{\beta}}.$$

With $\beta = 0.4$ and using estimates of h (from Krueger, 1968) brings India-US difference down to 5. Still big. (See also Mankiw, BPEC).

Explanation L2: Differences in A

• Suppose

$$y = Ak^{\beta}h^{1-\beta}$$

$$MPK = \beta A k^{\beta - 1} h^{1 - \beta}$$

- Big differences in k consistent with MPK-equalized if A higher in rich countries (Lucas had in mind human-capital externalities, but of course many other possibilities).
- Certainly a very plausible contender. Development Accounting (Hall and Jones, QJE; Klenow and Rodriguez-Clare, Macro Annual; Caselli, Handbook of Ec. Growth):

$$y = Ak^{\beta}h^{1-\beta}$$

with $\beta = 0.33$, and measured k and h (see below) variation in A explains more than 50% of variation in y.

Explanation S (Samuelson): specialization

- Multi-sector models with trade offer another explanation: as they accumulate capital countries jump to more capital-intensive goods.
- In a way it is as if higher k countries had higher β, or as if the EOS between k and l was infinite.
- Factor prices are equalized: again differences in k consistent with equalized MPK.

Checking Explanations L2 and S: are MPKs equalized? (Caselli and Feyrer)

- Some approaches to estimating MPKs
 - Comparisons of interest rates
 - Regressions of ΔY on ΔK
 - Calibration. E.g. Lucas' calculation

Approach of this paper

Constant returns and competitive markets

Capital Income in country $i = MPK^i \times K^i$

Then

$$MPK^{i} = \frac{\alpha^{i}Y^{i}}{K^{i}}$$

where α^i is measured capital share in income (country specific!)

No functional form assumptions

No need to estimate complementary factors, such as \boldsymbol{h}

Data

$lpha^i$ from Bernanke and Gurkaynak (2001)

 $K \mbox{ and } Y \mbox{ from PWT}$

One cross-section

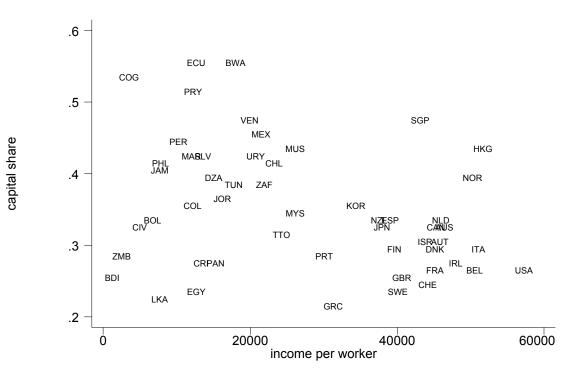


Figure 1: Capital Shares

What we get

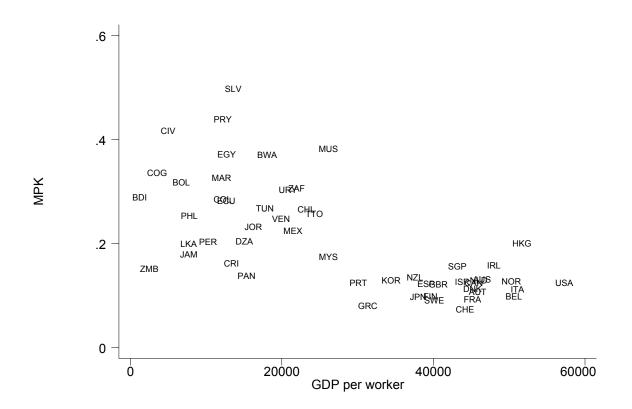


Figure 2: Implied MPKs

Poor-rich ratio approx. 2.5

Deadweight loss calculation

Counterfactual world GDP if existing K redistributed to equalize MPKs

(Abstract from changes in aggregate K).

Now need a functional form assumption:

$$y^i = (k^i)^{\alpha^i} (X^i)^{1-\alpha^i},$$

where $(X^i)^{1-\alpha^i}$ is a summary of the complementary factors (e.g. Ah). MPK is

$$MPK^{i} = \alpha^{i} (k^{i})^{\alpha^{i} - 1} X^{1 - \alpha^{i}}.$$

Constant-MPK counter-factual k in country i

$$(k^{i})^{*} = \left(\frac{\alpha^{i}}{MPK^{*}}\right)^{\frac{1}{1-\alpha^{i}}} X^{i}.$$

Resource constraint

$$\sum (k^i)^* L^i = \sum k^i L^i,$$

Substitute $(k^i)^*$ and solve for MPK^*

$$\sum \left(\frac{\alpha^i}{MPK^*}\right)^{\frac{1}{1-\alpha^i}} X^i L^i = \sum k^i L^i$$

Counter-factual distribution of \boldsymbol{k}

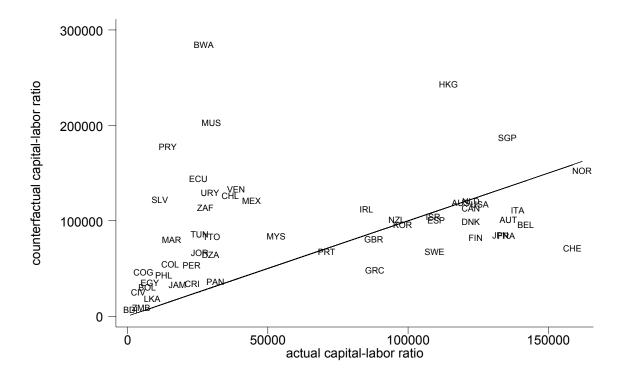


Figure 3: Effects of MPK Equalization on Capital

Average poor-country increase: unweighted 300%; weighted 235% Average rich-country decrease: unweighted 12%; weighted 18% Amount of reallocated capital: 18% of world stock

Counterfactual distribution of y

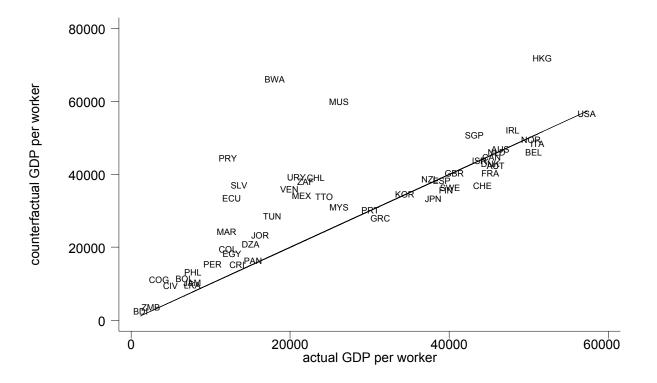


Figure 4: Effects of MPK Equalization on Output

Average poor-country increase: unweighted 75%; weighted 58% Average rich-country decrease: unweighted 3%; weighted 8% "World" gains 3% percent (or 25% of combined GDP of the "poor") Explanation L3: International Credit Frictions

- N does not lend much because S cannot credibly commit to repay
- *MPK*s differences reflect a "default risk premium"
- Lots of evidence that capital flows to countries with better "institutions" (See Reinhart and Rogoff)

Checking Explanation L3: are financial rates of return higher in poor countries?

Consider equipment-investment decision when funds can be borrowed or lent at rate R^i

$$rac{P_y^i(t)MPK^i(t) + P_k^i(t+1)(1-\delta)}{P_k^i(t)} = R^i$$

Abstracting from capital gains

$$rac{P_y^i M P K^i}{P_k^i} = R^i - (1-\delta)$$

No credit frictions if $R^i = R^*$, or

$$rac{P_y^i M P K^i}{P_k^i} = R^* - (1-\delta)$$

So we do not expect MPK equalization!

A more precise restatement

Each country produces an homogeneous tradable consumption good and a non-tradable consumption good. Each country imports capital from the "US"

(possibly with a tariff)

Capital Share

$$\begin{split} \alpha^{i} &= \; \frac{P_{T}MPK_{T}^{i}K_{T}^{i} + P_{NT}^{i}MPK_{NT}^{i}K_{NT}^{i}}{Y_{D}^{i}} \\ &= \; \frac{P_{T}MPK_{T}^{i}\left(K_{T}^{i} + K_{NT}^{i}\right)}{Y_{D}^{i}} = \frac{P_{T}MPK_{T}^{i}K^{i}}{Y_{D}^{i}}, \end{split}$$

where

$$Y_D^i \equiv P_T Y_T^i + P_{NT}^i Y_{NT}^i,$$

is GDP at domestic prices.

Hence, the object we call MPK is

$$MPK = \frac{\alpha^i Y^i}{K^i} = \frac{P_T MPK_T^i Y^i}{Y_D^i} = \frac{P_T MPK_T^i}{P_y^i},$$

No credit frictions if

$$rac{P_TMPK_T^i}{P_k^i}=R^*-(1-\delta),$$

Or

$$rac{P_y^i M P K^i}{P_k^i} = R^* - (1-\delta)$$

Reinterpretation of *MPK*:

$$MPK = \frac{MPK_TMPK_{NT}}{\gamma MPK_{NT} + (1 - \gamma)MPK_T}.$$

(Also need to assume same shares in tradables and nontradables for deadweight loss calculations)

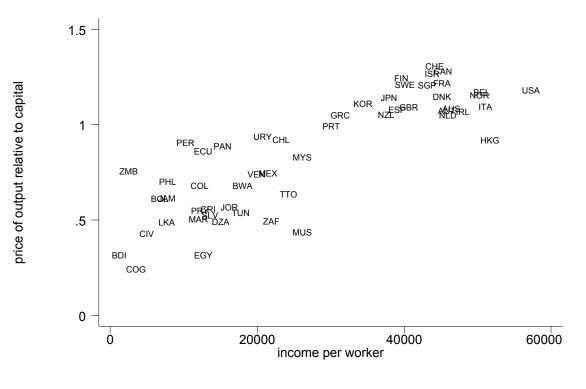


Figure	5:	Plot	of	$\frac{P_y}{P_k}$
--------	----	------	----	-------------------

Theories of P_y/P_k

Taxes on capital purchases (e.g. Chari et al.).

Relative productivity of investment sector (e.g. Hsieh and Klenow).

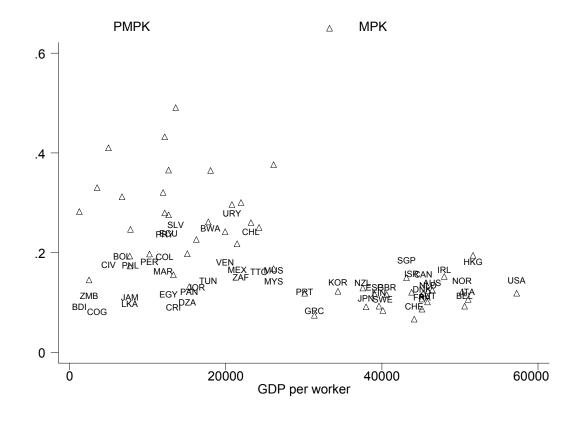


Figure 6: Plot of $\frac{P_y MPK}{P_k}$ and MPK

Low income mean 0.16 (vs. 0.28 for MPK), high income mean 0.13 (vs. 0.12). Also much less variance.

Deadweight loss of credit frictions

Existing K redistributed to equalize $P_y MPK/P_k$

Interpretation: component of deadweight loss from MPK differentials that is attributable to credit frictions (remainder is attributable to P_y/P_k).

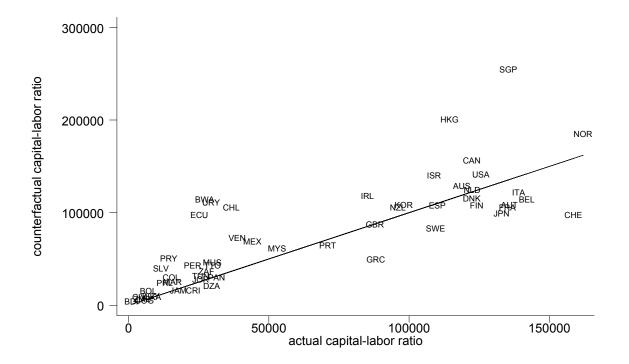


Figure 7: Effects of PMPK Equalization on Capital

Average poor-country increase: unweighted 61%; weighted 46% Average rich-country decrease: unweighted 0%; weighted 4% Amount of reallocated capital: 10% of world stock

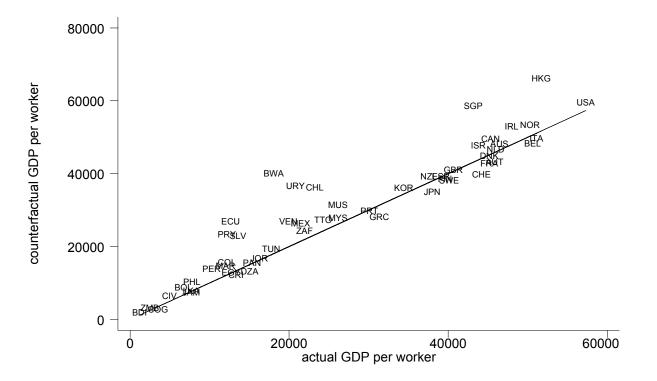


Figure 8: Effects of PMPK Equalization on Output

Average poor-country increase: unweighted 20%; weighted 16% Average rich-country decrease: unweighted 0%; weighted 1% "World" gains 1% percent Revisiting the Lucas question

 $\frac{\text{weighted average rich-country }k}{\text{weighted average poor-country }k} = 5.27$

Component explained by X

weighted average rich-country k^* weighted average poor-country k^* = 1.4

where k^{\ast} is the counterfactual with constant MPK

Component explained by X and P_y/P_k

weighted average rich-country k^* weighted average poor-country k^* = 3.3

where k^* is the counterfactual with constant P_yMPK/P_k

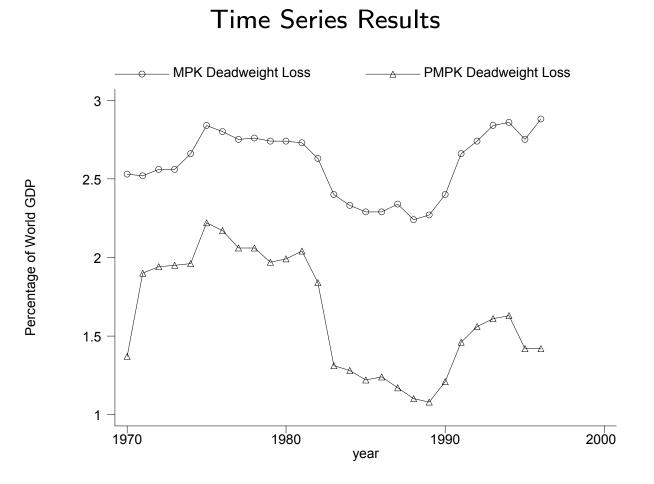


Figure 9: The Cost of MPK and PMPK Differentials

Conclusions

There are significant and costly MPK differentials

But credit market imperfections account for only 1/3 of the deadweight loss from unequal MPKs

Differences in P_y/P_k account for 2/3

Implication for aid policy

Large poor-rich "physical" MPK differentials usually seen as good reason to increase aid flows

But with small poor-rich "financial" MPK differentials increased aid flows likely to be offset by increased private flows in opposite direction

Caveat: A model with credit frictions, financial rate of return equalization, and differences in MPKs (Matsuyama, JEEA 2005)*

- Unique consumption good, CRS technology, F(K,L), $f'(0) = \infty$.
- Competitive factor markets. *L* inelastic.
- Production of physical capital. 1 unit of c-good and 1 entrepreneur produce *R* units of K. Each entrepreneur can produce only *R* units of *K*.
- Mass 1 continuum of potential entrepreneurs. Each entrepreneur endowed with $\omega < 1$ units of c-good. (Hence must borrow 1ω).
- Credit-market imperfection: entrepreneur can pledge up to a fraction $\lambda \leq 1$ of the return from project [i.e. $\lambda R f'(k)$].

*See also Gertler and Rogoff (JME 1990) who get similar results.

Key Equilibrium Conditions

• Entrepreneur must decide whether to borrow or lend. Participation constraint (PC)

 $Rf'(k) \ge r,$

where r is the borrowing/lending rate.

• Entrepreneur must credibly promise to repay. Incentive compatibility constraint (IC)

$$\lambda R f'(k) \ge r(1-\omega)$$

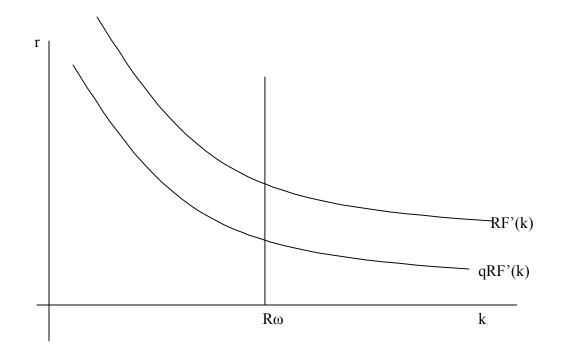
Closed-economy Equilibrium

- Since $f'(0) = \infty$ some people must be borrowers in equilibrium.
- Since someone must lend one of the two constraints must bind:

$$r = \min\left\{1, \frac{\lambda}{1-\omega}\right\} Rf'(k)$$

(The IC constraint binds when λ and ω are small - i.e. when need to borrow a lot and can promise little)

- Total c-good available for investment in projects: $\omega \ge 1 = \omega \rightarrow At$ most $\omega < 1$ people will be entrepreneurs, and the supply of capital is at most $R\omega$.
- Equilibrium number of entrepreneurs is indeed ω . Suppose it is less. Then some people are neither borrowing nor lending (return on their wealth is 0). They will offer to lend at lower r. See figure for case $q = \lambda/(1-\omega) < 1$. (But same is true regardless).



- In a closed economy always $k = R\omega$.
- MPK is lower in rich economy.

Open-economy Equilibrium

- Assume $\lambda_N > \lambda_S$, $\omega_N > \omega_s$. Immobile L, k, and entrepreneurs. C-good is mobile.
- Since $f'(0) = \infty$ there are some entrepreneurs in both S and N.
- Focus on equilibria with lenders in both N and $S,\!\mathrm{and}\,\,\mathrm{hence}\,\,r_s=r_{N,}$ and

$$\min\left\{1,\frac{\lambda_N}{1-\omega_N}\right\}Rf'(k_N)=\min\left\{1,\frac{\lambda_S}{1-\omega_S}\right\}Rf'(k_S)$$

(Interest rates are equalized!)

• Resource constraint

$$k_N + k_S = R(\omega_N + \omega_S)$$

• Two equations in two unknowns pin down equilibrium.

Case 1: $\lambda_S/(1-\omega) > 1$ (Good credit markets)

•
$$rac{\lambda_S}{1-\omega_S}>1$$
 implies $rac{\lambda_N}{1-\omega_N}>1$ and hence $k_N=k_S.$

- *MPK*s equalized
- \bullet Capital flows from N to S

Case 2: $\lambda_S/(1-\omega) < 1$ (Bad credit markets)

•
$$rac{\lambda_S}{1-\omega_S} < 1$$
 implies min $\left\{1, rac{\lambda_N}{1-\omega_N}
ight\} > \min\left\{1, rac{\lambda_S}{1-\omega_S}
ight\}$ and hence $k_N > k_S$

- MPK higher in S
- Capital may flow either from N to S or from S to N. (In latter case MPK differences are bigger than in autarky).[†]
- Note that reverse flows may occur even if $\lambda_S = \lambda_N$

[†]Capital flows from S to N if

$$\min\left\{1,\frac{\lambda_N}{1-\omega_N}\right\}Rf'(R\omega_N)>\min\left\{1,\frac{\lambda_S}{1-\omega_S}\right\}Rf'(R\omega_S),$$

and from N to S otherwise.

 Matsuyama (Econometrica 2004) endogenizes ω through savings and dynamics. Get endogenous inequality (ex-ante identical countries ending up with unequal wealth).

- Bottom line: possible to have a model where a dollar invested in S yields the same return of a dollar invested in N, and still the difference in MPKs is explained by credit market imperfections.
- Mechanism is that credit-market imperfections lead the borrower to expropriate the lender more in S (either because of lower λ, or because of lower ω - i.e. more leverage)
- Entrepreneurs are better off in S^{\ddagger} . Also, entrepreneurs are more leveraged in S.

[‡]Entrepreneurial income is

$$Rf'(k) - r(1-\omega) = Rf'(k) - rac{\lambda}{1-\omega}Rf'(k)(1-\omega) = (1-\lambda)Rf'(k).$$

Recall that k is increasing in λ and ω .

Appendix: Development Accounting

• If

Income = F(Factors, Efficiency),

how much of Var(Income) is explained by Factors, and how much by Efficiency?

- There are two main approaches in the literature:
 - Estimation of F
 - * Mankiw, Romer, and Weil (1992)
 - * Islam (1995)
 - * Caselli, Esquivel, and Lefort (1996)

- Calibration of ${\cal F}$
 - * King and Levine (1994)
 - * Klenow and Rodriguez-Clare (1997)
 - * Prescott (1998)
 - * Hall and Jones (1999)
- Development-accounting increasingly uses the calibration approach.

Benchmark Calculation

- Use PWT6 (instead of PWT56). World income distribution in 1996 (instead of 1988). 93 countries. USA richest, (then) Zaire poorest.
- Model:

$$Y = AK^{\alpha}(Lh)^{1-\alpha},$$

or (dividing by L)

$$y = Ak^{\alpha}h^{1-\alpha},$$

- Measurement of Factors.
 - For k use perpetual inventory method $(K_t = (1 \delta)K_{t-1} + I_t)$. I_t is from PWT, $\delta = 0.06$.

- For h use average years of education and Mincerian coefficients:

$$h=e^{\phi(s)},$$

where s is average years of schooling, and $\phi(s) = 0.13 \cdot s$ if $s \le 4$, $\phi(s) = 0.13 \cdot 4 + 0.10 \cdot (s - 4)$ if $4 < s \le 8$, $\phi(s) = 0.13 \cdot 4 + 0.10 \cdot 4 + 0.07 \cdot (s - 8)$ if 8 < s.

- Interpretation:

- * $w(s_i)$ is wage of a worker with s_i years of education. w_k is wage per unit of human capital. If $h = e^{\phi s}$, then $\log w(s_i) = \log(w_h e^{\phi s_i}) = \log(w_h) + \phi s_i$
- * Psacharopulos surveys of Mincerian regressions around the World says $\phi = 0.13$ in Africa, $\phi = 0.10$ in World, $\phi = 0.07$ in OECD.

• Calibration:
$$\alpha = 1/3$$
.

Benchmark Results

• Factor-Only model

$$y_{KH} = k^{\alpha} h^{1-\alpha}$$
$$y = A y_{KH},$$

- Thought Experiment: A constant.
- Measures of Success of the Factor-Only Model

$$success_1 = rac{ ext{var} \left[\log(y_{KH})
ight]}{ ext{var} \left[\log(y)
ight]}.$$

 $success_2 = rac{y_{KH}^{90} / y_{KH}^{10}}{y^{90} / y^{10}},$

var[log(y)]	1.246	y^{90}/y^{10}	20
$var[log(y_{KH})]$	0.501	y_{KH}^{90}/y_{KH}^{10}	7
$sucess_1$	0.40	$sucess_2$	0.35

Table 1: Baseline Success of the Factor-Only Model

• Upshot: investment rates and schooling (appropriately weighted) just don't vary enough across countries to explain the huge differences in incomes.

Basic Robustness Checks

- Alternative δ , construction of k, data on s, choice of ϕ .
- Unmeasured differences in work hours and unemployment.
- Overestimate of market hours in developing countries.
- Experience.

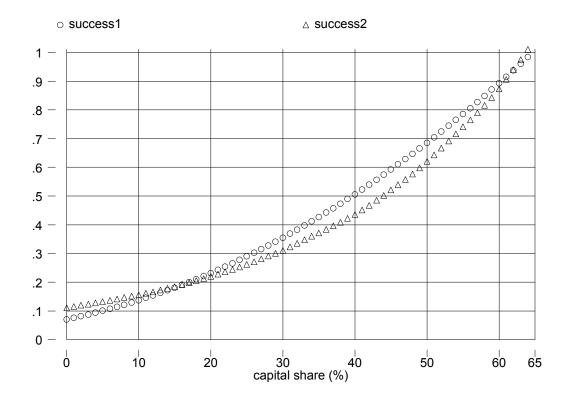


Figure 10: Capital Share and Success

Quality of Human Capital

Quality of education

- As measured by educational inputs
 - teachers' human capital
 - pupil-teacher ratio
 - school spending
- As measured by test scores.

Health (Weil, Shastry and Weil)

$$h = A_h e^{\phi(s)}$$
$$A_h = e^{-\phi_{amr}AMR},$$

where AMR is the "adult mortality rate," or the probability of "dying young." Weil's calibration: $-\phi_{amr}(\times 100) = 1.68$. Implies that 6 percent-

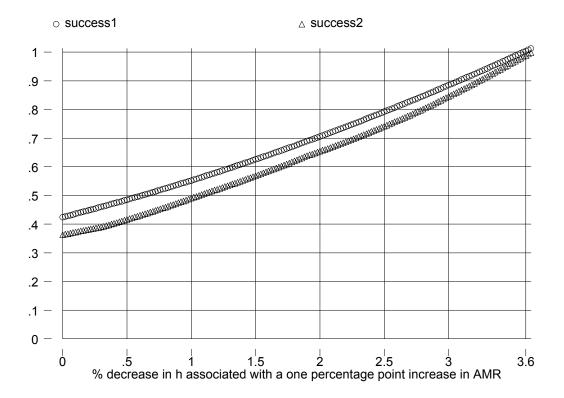


Figure 11: $-\phi_{amr}$ and Success

age points of AMR are equivalent to one extra year of schooling.