

CENTRO STUDI LUCA D'AGLIANO

WWW.DAGLIANO.UNIMI.IT

CENTRO STUDI LUCA D'AGLIANO DEVELOPMENT STUDIES WORKING PAPERS

N. 387

April 2015 This version: July 2016

Correlating Social Mobility and Economic Outcomes

Maia Güell * Michele Pellizzari ** Giovanni Pica *** Josè V. Rodríguez Mora ****

* University of Edinburgh, CEPR, FEDEA and IZA
** University of Geneva, CEPR, fRDB and IZA
*** Università degli Studi di Milano, LdA, CSEF, Baffi and fRDB
*** University of Edinburgh and CEPR

ISSN 2282-5452

Correlating Social Mobility and Economic Outcomes^{*}

Maia Güell[†]

Michele Pellizzari[‡] Giovanni Pica[§] José V. Rodríguez Mora[¶]

First version: February 2015 This version: July 21, 2016

Abstract

We construct comparable measures of intergenerational mobility (IM) for 103 Italian provinces using the recent methodology of Güell, Rodríguez Mora and Telmer (2007; 2014) and explore their correlation with a variety of social and economic outcomes. We find that higher IM is positively associated with economic activity, education and social capital, and negatively correlated with inequality. Moreover, there is no clear pattern of correlation with other socio-political variables. These results are qualitatively similar to Chetty, Hendren, Kline, and Saez (2014), with the important difference that Italy is a highly centralized state where institutions and policies are 'de jure' the same in all provinces. This suggests that something beyond institutional and policy differences also shapes intergenerational mobility.

Key words: Surnames, intergenerational mobility, cross-sectional data analysis. **JEL codes**: C31, E24, R10

^{*}We thank Cristina Blanco, Nicola Solinas, Alessia de Stefani and Robert Zymeck for superb research assistance. We thank Giacomo Giusti of the *Istituto Guglielmo Tagliacarne* for providing us with the provincelevel data on value added in 1981. We are also very grateful to Daniele Checchi, Carlo Fiorio and Marco Leonardi for sharing their program files to generate the traditional measures of mobility using the Bank of Italy SHIW data. We benefited from the very useful comments from two anonymous referees and the Editor, and seminar participants at Stanford University, Universidad de Alicante, University of Geneva, University of Manchester, EUI, Tinbergen Institute, the IZA-CEPR and EALE meetings, and the Madrid Mobility Workshop 2016. We are grateful to Joan Gieseke for editorial assistance. Financial support from the Spanish Ministry of Education and Science under grants ECO2011-28965 (MG) and ECO2011-25272 (JVRM) is gratefully acknowledged. Maia Güell is also grateful to the financial support from the Spanish Ministerio de Economia y Competitividad (MINECO-ECO2014-59225-P), and Michele Pellizzari gratefully acknowledges the financial support of NCCR-LIVES.

[†]University of Edinburgh, CEPR, FEDEA and IZA. Email: maia.guell@gmail.com

[‡]University of Geneva, CEPR, LIVES and IZA. Email: michele.pellizzari@unige.ch

[§]Università degli Studi di Milano, LdA, CSEF and Centro Baffi. Email: giovanni.pica@unimi.it

[¶]University of Edinburgh and CEPR. Email: sevimora@gmail.com

1 Introduction

Recent literature collects measures of intergenerational mobility (IM, hereafter) across different areas and correlates them with economic and social outcomes. Corak (2013), for instance, compares IM across countries and documents that higher social mobility is associated with less inequality.^{1,2} Chetty, Hendren, Kline, and Saez (2014) compare social mobility measures across U.S. commuting zones and find that higher mobility is associated with less segregation, less inequality, better schools, greater social capital and family stability. This evidence, while not causal, suggests that policy and institutional differences may be one of the underlying drivers of these correlations.³ Clark (2014), instead, looking at the correlation across generations of the average outcomes of individuals sharing the same surname, claims that mobility does not vary much across societies, and it is therefore uncorrelated with economic conditions.

This paper contributes to this debate by looking at the correlation between IM and a variety of interesting social and economic outcomes across different geographical areas (provinces) of a single non-federal country, Italy, in which all provinces share the same institutional framework.⁴ We measure IM by applying a novel method based on surnames proposed by Güell, Rodríguez Mora and Telmer (2007; 2014) to the universe of all tax declarations submitted in Italy in 2005. We show that Italian provinces exhibit a large degree of variability in social mobility. We then explore the correlation between IM and an array of aggregate economic and social indicators and find that IM is higher in provinces where the level of economic activity is higher, inequality is lower, and social capital and educational attainments are higher. We also find that IM does not correlate in any systematic way with other socio-political variables, such as crime rates and life expectancy.

Our work contributes to the literature in a number of dimensions. First, we confirm the evidence by Corak (2013) and Chetty, Hendren, Kline, and Saez (2014) on a different coun-

¹See also Corak (2006) for an earlier analysis of a cross-country comparison between IM and the return to tertiary education, an important determinant of cross-sectional inequality.

²Less recently, Björklund and Jäntti (1997), Couch and Dunn (1997), Checchi, Ichino, and Rustichini (1999),

Björklund, Eriksson, Jäntti, Raaum, and Österbacka (2002), Comi (2003) and Grawe (2004) compare mobility patterns across countries. In the literature review by Black and Devereux (2011) the authors offer a discussion of why IM might differ across countries.

³Björklund and Salvanes (2011) offer a review of recent empirical research on education and family background, which includes a discussion on the impact of educational policy on IM.

⁴Recently, Aydemir and Yazici (2015) provide correlates of IM and socioeconomic development within Turkey.

try and using completely different data and methodology. Second, the fact that we exploit *within*-country variation and focus on Italy, a highly centralised country in terms of political institutions and policy making, allows us to conclude that the correlations that we document can hardly be explained by differences in policies, such as those related to education or welfare. This is an important contribution that differentiates our work from most papers in this area, such as Corak (2013) and Chetty, Hendren, Kline, and Saez (2014), which compare political entities implementing very different policies that are likely to directly affect both the degree of IM and socio-economic outcomes. In Italy such policies are *de jure* decided at the central level. Hence, the correlations between IM and the vast array of outcomes that we consider cannot be attributed to differences in policies across Italian provinces. Something else, beyond local policies, must be jointly driving the degree of intergenerational mobility and macro outcomes.

From a methodological point of view, we follow Güell, Rodríguez Mora and Telmer (2007; 2014), who measure mobility by using an indicator – the *Informational Content of Surnames* (ICS) – of how much individual surnames explain the total variance of individual outcomes. The ICS compares the within-surname variance of an individual outcome, income in our case, with its unconditional variance. The lower the within-surname variance with respect to the unconditional one, the lower the degree of social mobility. This method allows us to construct IM measures for small geographical areas without relying on panel data. It measures mobility by looking at the imprint of inheritance on a cross section of individual outcomes. An intrinsically dynamic characteristic (mobility) can be ascertained very much in the same way as the speed of a moving object can be inferred from the distortion that it produces on a photograph. The method is like using the Doppler effect to infer the velocity of a moving object, as astrophysicists do.⁵

⁵It is important to stress that this methodology differs in many respects from other recent work using surnames to measure mobility, such as Collado, Ortuño-Ortín, and Romeo (2012), Clark (2014) or Diaz Vidal (2014). These papers use a "group estimator" of the standard IM coefficient, which in this context is likely to produce an upward bias (see Güell, Rodríguez Mora, and Telmer (2014) for further discussion). More concretely, Clark (2014) averages individual outcomes within surnames for each generation – thus eliminating the within-surname variance of individual outcomes – and then looks at the correlation of those within-surname averages across generations. Clark (2014)'s procedure mechanically makes the unconditional variance of individual outcomes are upward bias in the estimate of how much surnames can explain such total variance. This is why he gets very high persistence rates in all countries. This shortcoming of the group estimators is well known and has been shown empirically by Chetty, Hendren, Kline, and Saez (2014), and explained by Solon (2016) and Voster (2014). The approach we follow does not suffer from this bias because it uses individual-level (as opposed to surname-level) outcomes.

Güell, Rodríguez Mora and Telmer (2007; 2014) show theoretically that the ICS maps into the standard measures of mobility. Moreover, they show empirically that the evolution of IM over time in Spain mimics the evolution of standard sibling correlations. In this paper, we further corroborate the association between the ICS and IM by showing the similarity in our findings with Corak (2013) and Chetty, Hendren, Kline, and Saez (2014), who use administrative data.

The paper is organised as follows. Section 2 describes the methodology based on the informational content of surnames used to measure intergenerational mobility across Italian provinces. Section 3 provides information on the rules governing the transmission of surnames in Italy. Section 4 describes the data used; Sections 5 and 6 discuss the results of the analysis. Section 7 concludes.

2 Measuring Mobility

In this paper, we use the measure of intergenerational mobility proposed by Güell, Rodríguez Mora and Telmer (2007; 2014), the *Informational Content of Surnames* (ICS). Unlike traditional measures of mobility, it does not require panel data nor any explicit links between children and their parents. One cross-sectional data set of surnames and economic outcomes is enough.⁶

Our approach has many similarities to the well-established methodology of looking at sibling correlations in order to infer IM. If economic inheritance is important, the outcomes of siblings should be correlated because they share parents and, thus, they share the same inherited economic traits. Consequently, the variance of siblings' income should be similar to the population variance if inheritance is irrelevant, but much smaller if inheritance matters a lot. If income follows an AR(1) process with autocorrelation ρ and conditional variance σ^2 , the ratio

⁶The ICS also differ substantially from the so-called *Two-Sample Two-Stages Least Squares* (TS2SLS), an alternative methodology used by some authors to overcome the need of long panels to compute empirical measures of IM (Björklund and Jäntti, 1997; Barone and Mocetti, 2016). The ICS only requires one simple cross-section of data whereas TS2SLS requires representative data on at least two generations. In particular notice that having data on two cross-sections representative of the same population at two different points in time might not necessarily provide representative data on two generations or birth cohorts. Hence, we see the data requirements of the TS2SLS as being substantially stronger than those of the ICS.

of sibling variance to total variance is

$$\frac{\sigma^2}{\frac{\sigma^2}{1-\rho^2}} = 1 - \rho^2$$

Notice that this ratio is the R^2 of a regression of individual income on sibling dummies. This works in an obvious manner for siblings, because we know the exact relationship between them and with the ancestor from whom they get inheritance. Essentially the same procedure works using surnames because surnames establish a partition of the population that is informative about family links.

The amount of information contained in surnames is the ratio of the variance of income conditional on sharing a surname to the unconditional variance of income - that is, the R^2 of a regression of individual income on surname dummies. Given a certain mapping between the surname partition and family linkages, the more prevalent inheritance is, the larger the amount of information that surnames will contain.

Thus, the key to the method is that surnames are informative about family linkages. They do happen to be informative because surname distributions are very skewed. If there were only a few surnames, the mapping between the surname partition and family relationship would be extremely blurred, and conditioning on surnames would not change the variance for any degree of inheritance. Fortunately, Western surname conventions ensure that surname distributions are bound to be very skewed. Despite the presence of a small number of surnames shared by very many people – who are very unlikely to have common ancestors – surname distributions typically contain a very large number of uncommon surnames shared by few individuals who are instead very likely to have close family relationships. In those infrequent surnames lies the power of the methodology.

2.1 The Informational Content of Surnames

The *Informational Content of Surnames* is a measure of how much information surnames contain about the economic outcomes of individuals, after controlling for other factors. The definition of the ICS is as follows. Consider a cross section in which each individual is associated with a surname s, a measure of economic well-being y_{is} , and a vector of additional demographic characteristics X_{is} , such as age and gender. Güell, Rodríguez Mora, and Telmer (2014) define the ICS as the difference between the R^2 of two regressions. The first regression, whose R^2 is denoted as R_L^2 , models the economic well-being of individual i with surname s as follows:

$$y_{is} = \gamma' X_{is} + b'D + \text{residual},\tag{1}$$

where D is an S-vector of surname-dummy variables with $D_s = 1$ if individual *i* has surname s and $D_s = 0$ otherwise.

Since the number of surnames is very large and they may happen to explain the variance of y_{is} even if they do not carry any information on family linkages, a second set of regressions is performed to ensure that we do not spuriously attribute informativeness to surnames. In each of the regressions, we include a different S-vector of 'fake' dummy variables F that randomly reassign surnames to individuals in a manner that maintains the marginal distribution of surnames but destroys the informativeness of surnames about familial linkages. The regression is

$$y_{is} = \gamma' X_{is} + b' F + \text{residual.}$$
(2)

The R^2 from this regression is denoted as R_F^2 . We replicate the regression in (2) ten times and calculate the average of all the R^2 obtained.⁷ Denoting such an average as \overline{R}_F^2 , the ICS is defined as

$$ICS \equiv R_L^2 - \overline{R}_F^2.$$
(3)

The ICS measure has a number of important properties. It has value zero if there is one surname per person or if there is only one surname for everyone. More generally, it captures the information that surnames contain because of family linkages and measures how much of

⁷Results do not depend on the number of replications.

the variance of the dependent variable is explained by the variance of the surnames.⁸

2.2 Cross-provincial comparability of the ICS

Given that our goal is to get comparable estimates of the ICS for each Italian province in order to investigate the correlation between mobility and a battery of aggregate socio-economic outcomes, it is of paramount importance that the distributions of surnames across provinces are comparable so that any differences in the ICS reflect differences in social mobility and not in other factors.

Section 5 shows that the distributions of surnames are indeed very similar across provinces once we drop individuals with surnames that are too frequent to be informative about family connections. The tail of the surname distribution that contains infrequent surnames identifies family linkages with less noise and is therefore more comparable across provinces. For this reason, in the paper, we will use the ICS computed on individuals whose surname contains less than 30 people as a baseline measure of social mobility and show that results are similar both when using all individuals and when concentrating on individuals whose surname contains less than 15, 20 and 25 people. This issue is further discussed in Section 5.

An additional challenge that may affect the cross-province comparability of the ICS is migration, both from other countries and from other Italian provinces. Migrants may have both very different surnames and very different economic outcomes as compared with natives in the recipient region (at least initially). Hence, their surnames might be very informative regardless of the degree of IM in the province. Additionally, if highly motivated young people in southern Italy move to the North or emigrate, this may raise within-family income correlation in the South with respect to the North. Unfortunately, since our data do not include information on the birthplace of the individuals, we cannot directly track migrants.

Following Güell, Rodríguez Mora, and Telmer (2014), we can, however, construct an index of the local dimension of surnames and focus our analysis on the individuals whose surname is relatively common in their province of residence. Such individuals are very unlikely to be

⁸Güell, Rodríguez Mora, and Telmer (2014) provide a model that maps the ICS into the traditional measure of IM based on father-son regressions and show that the former is monotonically increasing in the latter.

migrants. We measure how local a surname s in province r is as follows:

$$LocalDegree(s, r) = \frac{\text{Number of people with surname } s \text{ in province } r}{\text{Number of people with surname } s \text{ in Italy}}$$
(4)

To the extent that migrants have very different surnames from natives, they display a low value of the index in the recipient province. Therefore, by restricting the analysis to individuals whose surnames are local enough, we plausibly exclude immigrants and minimise the effect of migration in the province of *destination* on the ICS.

Yet, this procedure does not resolve the migration issue completely because it allows us to identify likely migrants in the province of destination (and drop them) but is silent about their origin. For this reason, our estimates of social mobility in the provinces from which individuals migrate may still suffer a bias because we do not observe the individuals that left. To account for this potential bias when looking at the correlation between mobility and macro outcomes, we perform a number of robustness checks. First, given that internal migration in Italy mostly flows from the South to the North, we include a North/South dummy in the regressions of IM on province-level outcomes. Second, we control for the net province-level migration flows obtained from the Italian National Institute of Statistics. None of these robustness checks change our results significantly.

3 Italian Surnames

In Italy, surnames follow the standard Western naming convention. Most people inherit their surnames from their fathers. At the same time, there can be some surname innovations because it is possible, although not easy, to change one's surname. The procedure to do so is quite complex and can take up to one year. As discussed in Güell, Rodríguez Mora, and Telmer (2014), this naming convention implies that the resulting distribution of surnames is very skewed, meaning that most people have very infrequent surnames and that the likelihood that any two persons sharing an unusual family name are linked by some family connection is extremely high.

Unlike most other countries, in Italy women do not change their official surnames upon

marriage. While in everyday life it may happen that married women use their husbands' surname, the law requires everyone to use their inherited surnames in all official documents regardless of marital status. Indeed, in Italy the government identifies taxpayers through a unique fiscal code (*codice fiscale*), which is given to each person at birth and does not change with marriage. The code depends on the name, the surname at birth, date and place of birth. So, the state identifies taxpayers through the surname at birth. Furthermore, the instructions for income tax forms state explicitly that married women should use their maiden surname.

As already mentioned, it is possible to change one's surname, in which case one's fiscal code is also changed. This same procedure also applies to married women who want to officially add their husbands' surnames to their original ones or even replace their maiden surnames with their husbands'. Hence, in the vast majority of cases, both men and women file their tax reports using their inherited surnames. This means that technically we can calculate the ICS for the entire population, both males and females, using tax data. In our baseline estimates, we focus on males, as most of the literature does. Appendix C provides estimates that include females as well.

4 Data

In this paper, we exploit very rich individual-level microdata from Italy with information on both individual surnames (anonymised) and individual taxable incomes. We use these data to compute measures of the ICS at the provincial level. We then link such measures with macroeconomic variables at the same level of geographical aggregation.⁹ We obtain these macroeconomic variables from a variety of different sources.

4.1 Tax records

Our main indicators of mobility are the ICS computed by using data from the universe of all the official tax declarations in Italy for the year 2005. These declarations were submitted

⁹The exact number and boundaries of the provinces have changed a few times over the recent decades. We use the definition of provinces as of 2004, which is the reference year of our tax data, although the current (2016) definitions are slightly different.

between the beginning of May and mid-June 2005 and refer to all taxable incomes (excluding capital incomes) earned between January 1 and December 31, 2004. We obtained the data from the website of the Italian Ministry of Finance, where they were published on April 30 2008, but were subsequently removed following the intervention of the Italian Privacy Authority. Even though the individual tax declarations were (and still are) classified as public information in Italy, the procedure to access them is strictly regulated and the Authority deemed that the online publication did not conform to the law. The formal procedure to access the data requires submitting an individual request to the local branch of the tax authority, which can provide information exclusively regarding the citizens who reside in its area.

The Authority also clarified that whoever had obtained the data through the Ministry's website had done so legally. However, the norms regulating access to the data apply to everyone and it is prohibited to distribute them, at least in their original format, other than through the formal legal procedure. For this project, we have produced a fully anonymised version of the data, with individual names and surnames replaced by numerical codes (still allowing for the identification of individuals sharing the same names or surnames), which we use to produce all of the results in the paper and which can be distributed for replication purposes. The same data have been used by Braga, Paccagnella, and Pellizzari (2016); Anelli and Peri (2013). The very special situation under which the 2005 tax records were made available did not reproduce itself, and only this year of data is available for research purposes.¹⁰

Despite covering the entire universe of submitted declarations, our data do not necessarily include the whole Italian population. Although in principle every resident in Italy is required to submit a tax declaration, there are exceptions. The first and most important exception includes children (and any other dependent family members), who are not required to submit their own tax forms but appear in the forms of their parents (either one or both) who may be eligible for family allowances.¹¹ The second important category includes persons whose income falls below a given threshold, who are exempted from declaring taxes. The exact threshold depends

¹⁰Researchers at some institutions, such as the Ministry of Finance or the Bank of Italy, might have access to more detailed data covering longer time periods under special agreements (see, for example, Barone and Mocetti (2016); Mocetti and Viviano (2015)).

¹¹Technically, one is considered a dependent family member if one's income is below a fixed threshold ($\in 2,840.51$ in 2004). Submitting one's own declaration separate from that of the household head is, however, always possible.

on the composition of the income sources and varies between $\leq 3,000$ and $\leq 7,500$ in the year of our data. Among this second group of exemptions are also those who earn exclusively capital income, which is taxed separately in Italy and does not enter the calculation of personal taxable income.

Italy has three different forms of tax declarations. Persons who only have incomes from dependent employment have their taxes deducted directly from their monthly salaries, and their employers submit a summary tax report for them. Technically, these persons do not submit any form themselves. The second form is used by those who have incomes from both dependent employment and other sources. Finally, the third form is for all those who do not fall into either of the first two groups, namely the self-employed and those with incomes from rents and dividends. In our data, each of these forms is used by about one-third of the taxpayers.

All three tax forms are quite voluminous, from 6 to 30 pages depending on the exact situation of the taxpayer. However, our data contain only a limited subset of this information, namely the names of the person submitting the file, their dates of birth, the province of residence, total taxable income, the most prevalent source of income (e.g., dependent employment, self-employment, rents and dividends), the amount of the tax due and the form used for the declaration.

In the original data, the first name and the surname of the taxpayer are coded in a single string variable, and in order to separate them, we used the following procedure. First, we considered only those cases in which the original string contained only two separate words, indicating that the person only has one name and one surname. For these cases, we know that the first word is the first name and the second is the surname. About 70% of cases in our data were settled in this simple way. For the others, we created an archive of first names using those derived in the first step of our procedure, complemented by a number of additional lists of Italian first names.¹² Next, we considered records with more than two words in the original string variable, and we coded as surnames the continuous sequences of words that did not appear in our archive of first names. The sequences are continuous in the sense that the

¹²For this, we use the first names of lawyers and politicians (who are all registered in public registries where first names and surnames are clearly separated) and a number of websites and books providing guidance to parents who are choosing a name for their newborns.

algorithm takes into account the fact that the original string must be formed by a sequence of first names followed by a sequence of surnames and the two cannot be mixed. We then coded the remaining sequences of words as first names. Our archive of first names also allowed us to classify them by gender, although about 7.5% of the records could not be unambiguously assigned to a gender.¹³

Overall, there are 38,514,292 records in the original tax files, which compares with about 50 million residents in Italy aged 16 and over in 2004 or about 80% of the entire population who could legally earn labour incomes.¹⁴ After dropping 2,932,851 observations for which the information on gender is not reliable, we are left with 35,581,441 observations. In order to limit complications arising from the process of labour market participation, we focus exclusively on men, and we further exclude outliers above 100 years old. Finally, we also exclude individuals with unique surnames in their province because the ICS is not defined for them. This leaves us with 18,890,891 observations, of which 18,884,811 have nonmissing taxable income.

Taxable income, as recorded in the tax declarations, is our main indicator of economic success and the basis for our analysis of mobility. According to Italian legislation as of 2005, taxable income is the sum of all gross earned incomes (excluding capital income) minus deductions, which are granted for a variety of reasons (e.g., number of children, mortgage interest on first homes, some medical and educational expenses, and so on). Importantly, the rules defining fiscal deductions do not vary across geographical areas. These allowances, plus the fact that the self-employed can report losses, mean that taxable income can be zero. The existence of the allowances also implies that individuals with the same taxable income may end up paying different amounts of taxes.¹⁵

Table 1 (Panel A) reports some descriptive statistics for our data. The final working population contains about 19 million taxpayers with an average annual gross income of about 15,500 euros and a standard deviation of almost 43,000 euros, approximately 2.8 times the average. A nonnegligible fraction of individuals, around 18% in our population, declare zero income. Given the size of this group, we want to keep them in the sample that we use for the empirical

¹³These ambiguities are much more likely to arise for foreigners than for Italians.

¹⁴Education in Italy is compulsory until the age of 15, so 16 is the minimum working age.

¹⁵In Güell et al. (2015) we present results based on ICSs computed using the net tax paid instead of taxable income as an indicator of economic success, and results are unchanged.

Variable	Mean	Std. Dev.	Min	Max	Ν		
	Panel A: individual-level						
Taxable income	15,737.21	42,993.09	0	101,255,692	18,884,811		
	Panel B: surname/province-level						
Number of individuals in the province per surname (a) Number of individuals in the province (b) Frequency of surname (a/b) (\times 10,000)	$16.32 \\ 334,004.3 \\ 0.890$	60.43 35,3625.6 2.815	$2 \\ 30,632 \\ 0.016$	$18,\!684 \\ 1,\!249,\!617 \\ 237.199$	1,157,740 1,157,740 1,157,740		

TABLE 1. Tax records: descriptive statistics

Source: 2005 Italian tax records. Sample: males aged 16-100 years old.

analysis; hence, we take the log of (1+taxable income) as a dependent variable in regressions 1 and 2. As is common with most distributions of incomes, we see a relatively long right tail, with the 95th percentile at around 50,000 euros and the 99th percentile just over 100,000 euros.

Tax evasion is a well-known phenomenon of the Italian economy, and it is reasonable to think that these fiscal records are only noisy measures of the true underlying incomes (Fiorio and D'Amuri, 2005). In Section 4.1.1 we discuss this issue and its potential implications for our empirical exercise.

For the purpose of constructing the ICS, the distribution of surnames is perhaps more interesting than the distribution of individuals (Table 1, Panel B). We have about 1 million surnames (treating the same surname in different provinces as different units) with 16.32 individuals holding the same surname on average in the same province. Considering that the average province has about 334,000 residents, each surname covers on average slightly less than 1 (0.890) every 10,000 persons. This (very low) average frequency approximates the probability that any two individuals taken at random in a typical province share the same surname. Instead, the probability that two individuals at random belong to the same family conditional on having the same surname is, in the typical province where each surname contains 16.32 individuals, given by family size/16.32. Taking the extremely restrictive view that the average family size is equal to 3, this probability is equal to 3/16.32 = 0.1838, that is about 2,000 times larger than the probability that any two individuals taken at random share the same surname and about about 20,000 times larger than the probability that any two individuals taken at random (unconditional on sharing surnames) belong to the same family. As predicted by the rules of surname transmission, the distribution of surnames is very skewed. The median frequency of surnames is 1 every 40,000 and the 25% percentile is 1 every 90,000.

4.1.1 Under-reporting

Given the large degree of tax evasion in Italy, it is reasonable to think that the incomes in the fiscal declarations are often under-reported.¹⁶ In this section, we briefly discuss the role of under-reporting for the computation of the ICS.

In our case, one might worry that under-reporting could affect our results depending on its pattern across income and geographical distributions. One can imagine, for instance, that richer provinces may have less or more under-reporting than poorer regions. Note, however, that any differences in the *level* of under-reporting across provinces are completely immaterial because the ICS measures the ratio between the conditional and unconditional *variances* of income. Thus, for under-reporting to affect the ICS, it needs to differentially affect the variance of income across provinces. If, for example, under-reporting generates noise and therefore raises the unconditional variance of income, in provinces in which incomes are more often underreported, the measured ICS will be lower.

To see this argument more formally, let us assume that, because of under-reporting, the true income y_{isp} of individual *i* with surname *s* in province *p* appearing in equation (1) is not perfectly observable and we only observe a noisy version of it, namely $y_{isp}^* = \alpha_p y_{isp} + \varepsilon_{isp}$, with $\alpha_p < 1$ measuring the province-specific evaded proportion of income and ε_{isp} being an error term uncorrelated both with the true level of income of the individual and with his or her surname.¹⁷

The term α_p has clearly no impact on the ICS because it does not affect the province-specific R^2 of the estimates of equation (1): it is just a rescaling factor. The term ε_{isp} may have an impact on the ICS only if its variance is province-specific.¹⁸ The reason is that in provinces in which the variance of ε_{isp} is larger the unconditional variance of income is also larger and the

¹⁶The Italian National Institute of Statistics (ISTAT) estimates that in 2004 – the year of the incomes used in this paper – the undeclared economy ranged between a minimum of 16.1% to a maximum of 18.1% of national GDP and that about 10.1% of employed workers were undeclared (i.e., their contracts were not registered and/or they were not paying social security contributions).

¹⁷In order to highlight the role of the heterogeneity across provinces, here we add the subscript p, whereas it is omitted in equation (1) for brevity.

¹⁸This may happen even if ε_{isp} is uncorrelated to surnames and does not bias the estimates.

 R^2 from the estimates of equation (1) necessarily lower. Instead, a province-specific expected value of ε_{isp} is absorbed by the province-specific constant of the regression and does not affect the ICS.

Thus, whether tax evasion affects our results is ultimately an empirical matter and depends on whether differential under-reporting across provinces affects the unconditional variance of the observed incomes. To address this issue, we exploit differences in the likelihood of underreporting across individuals earning incomes from different sources. In fact, individuals who only earn income from dependent employment are taxed at the source by their employers and cannot choose to under-report. Hence, tax evasion is mostly an issue of the self-employed. Appendix C investigates empirically how the spatial distribution of the estimates of the ICS is affected by under-reporting excluding the self-employed – who are seemingly more prone to under-report – from the sample and finds that all the correlations with the macro variables remain virtually unchanged.

Notice also that if (for whatever the reason) misreporting were more prevalent in the South, as some people may suggest, the ICS would be relatively underestimated in the South. Given that we find the opposite (the ICS is substantially higher in the South), this effect would mean that we are underestimating the differences.

4.2 Macrodata

For each of the 103 provinces, we collect various aggregate economic and social outcomes. These data come from the Italian National Institute of Statistics (ISTAT), unless otherwise explicitly specified below. Our ICS indicators are produced using data on incomes earned in 2004.

Ideally, one would like to relate these data not only to recent economic outcomes but also to outcomes decades ago. Although this approach would not allow us to go beyond simple correlations between social mobility and macro outcomes, it would enhance our understanding of how persistent the correlations are, given that mobility is arguably a slow-moving variable. Unfortunately, ISTAT does not provide province-level variables for the years prior to 1999. For this reason, most of our variables refer to the period 1999-2004. As a notable exception, we have value added per capita in 1981 kindly made available by the *Istituto Guglielmo Tagliacarne*. Table A1 in Appendix A lists all the variables and specifies the years for which they are available. To limit the impact of cyclical fluctuations and concentrate on long-run structural correlations, we average these variables over all available years whenever possible.

For the sake of expositional clarity, we organise all of our province-level variables into three categories. The first category contains outcomes that are of particular interest for the debate on the causes and consequences of low social mobility, such as the level of economic activity, educational attainment, inequality and social capital. The second category refers to economic variables measuring labour market outcomes and the degree of trade openness of the province. The third group of variables includes a number socio-political outcomes, such as life expectancy, suicide rates, crime rates and public sector activity. The latter consists of variables capturing the degree of intervention of both the central and the local governments (value of public works started and completed, by either the central or the local government) and the efficiency of local governments (delay of payments to suppliers, measured by the ratio between paid and committed outlays in the municipal budget within the year, schooling level of the local politicians and the budget deficit).

Tables 2, 3 and 4 provide descriptive statistics for each group of variables. Without going into the details of each variable, it is worth noticing the great deal of heterogeneity that characterises the Italian provinces. For example, value added per capita is on average equal to $\in 18,830$ (Table 2). However, the province at the 90th percentile (Brescia) is 30% above the average, namely $\in 24,717$, and the province at the 10th percentile (Trapani) is 37% below, namely $\in 11,930$. Thus, value added per capita is twice as large in Brescia as in Trapani.¹⁹ The large degree of heterogeneity also characterises the distribution of the other variables in Table 2, including social capital (such as voter turnout and newspaper sales), education and cross-sectional inequality, and in Tables 3 and 4, with the exception – perhaps not surprisingly – of life expectancy.²⁰

¹⁹The number of observations reflects the number of provinces at the time each variable is measured: 95 in 1981 and 103 in the period 1999-2003.

 $^{^{20}}$ Our data, of course, confirm the well-known fact that provinces in southern Italy perform worse than those in the centre and in the North in terms of economic outcomes. They also confirm that the North/South divide in terms of value added per capita – for which we have data both for 1981 and for the beginning of the 2000s – is persistent, with little or no convergence taking place across provinces.

TABLE 2. Key outcomes: descriptive statistics

			Percentiles			
	N	mean	10	50	90	
Economic activity						
Value added per capita (avg 1999-2004)	103	$18,\!830$	11,932	19,378	24,717	
Value added per capita (1981)	95	3,997	2,569	4,233	5,123	
Educational attainment						
Individuals aged 25-64 with at most 8 years of schooling per 100 same-age individuals	103	52.84	44.96	52.61	61.58	
Early school dropout aged 18-24 per 100 same-age individuals	103	22.26	14.32	21.54	31.88	
Inequality						
Standard deviation of log income	103	3.985	3.60	3.92	4.40	
Social Capital						
Voter turnout in Chamber of Deputies elections per 100 voters	103	82.05	74.86	83.23	87.47	
Voter turnout in Senate of the Republic elections per 100 voters	103	82.17	74.54	83.18	87.58	
Voter turnout in European Parliament election per 100 voters	103	73.94	63.09	75.12	81.09	
Newspaper sales per capita	103	0.234	0.0540	0.130	0.481	

Notes: Table A1 describes the sources and years available of each variable.

TABLE 3. Other economic outcomes: descriptive statistics

N mean 10.50 90	<u> </u>
1V mean 10 00 00	5
Economic activity	
Protested cheques per 1,000 inhabitants $103 564.5 211.9 460 1,03 103 564.5 211.9 460 1,03 10$	34
Labour market outcomes	
Unemployment rate 103 9.322 3.237 5.854 21.5	53
Unemployment rate - Males 103 6.725 1.933 3.921 16.3	39
Unemployment rate - Females 103 13.75 4.931 8.877 31.4	40
Unemployment rate (age 15-24) 103 25.95 8.715 18.20 54.3	33
Long-term unemployment rate (12 months or more) $103 3.850 0.962 2.136 9.25$	38
Employment rate $103 \ 45.22 \ 34.92 \ 47.40 \ 52.7$	70
Employment rate - Males 103 56.73 48.97 57.68 63.6	62
Employment rate - Females 103 34.52 21.75 37.40 42.4	42
Employment rate (age $15-24$) 103 28.46 13.43 31.23 41.3	37
Employment rate (high school, age 25-64) 103 73.69 60.43 76.87 82.0	02
Employment rate (at least college graduate, age 25-64) 103 79.61 72.53 80.18 85.4	48
Participation rate (age 15-64) 103 61.24 52.03 63.37 68.5	57
Participation rate (age 15-64) - Males 103 73.82 69.61 74.11 77.4	44
Participation rate (age 15-64) - Females 103 48.64 33.30 51.31 59.7	75
Participation rate (age 15-24) 103 32.92 24.05 33.03 40.9	92
Trade openness	
Imports to value added 103 172.9 38.74 152.9 315	5.9
Exports to value added 103 204.0 35.46 194.9 412	2.9

Notes: Table A1 describes the sources and years available of each variable.

	N	mean	10	50	90			
Life Expectancy								
Life expectancy at birth - Males	103	77.45	76.27	77.53	78.60			
Life expectancy at 65 - Males	103	17.05	16.37	17.07	17.70			
Life expectancy at birth - Females	103	83.22	82.27	83.30	84.13			
Life expectancy at 65 - Females	103	20.99	20.33	21.07	21.67			
Suicide Rates								
Suicides per 100,000 inhabitants - Total	103	7.272	3.887	6.954	10.99			
Suicides per 100.000 inhabitants - Males	103	10.19	2.361	9.788	17.14			
Suicides per 100,000 inhabitants - Females	103	2.950	0.474	2.645	5.583			
Suicide attempts per 100,000 inhabitants - Males	103	7.129	2.043	5.607	16.86			
Suicide attempts per 100,000 inhabitants - Total	103	7.621	3.213	6.393	13.58			
Suicide attempts per 100,000 inhabitants - Females	103	7.401	1.211	5.163	18.55			
Crime Bates								
Total crimes	103	3.520	2.409	3.284	5.106			
Violent crimes	103	162.1	110.4	146.6	219.8			
Thefts	103	1.932	1.013	1.775	3.106			
Other crimes	103	1,467	1,040	1 410	1 948			
Murders per 100.000 inhabitants	103	1.217	0	0.919	2,439			
Sleight of hand per 100.000 inhabitants	103	163.1	21.03	105.7	368.9			
Theft with tear per 100,000 inhabitants	103	27.03	4.798	15.65	62.87			
Burglaries per 100,000 inhabitants	103	425.0	225.1	398.4	588 2			
Theft of parked cars per 100.000 inhabitants	103	355.5	152.2	304.4	622.5			
Car thefts per 100 000 inhabitants	103	231.7	68 66	149 1	496.0			
Scams per 100,000 inhabitants	103	123.8	73.07	117.3	168.9			
Smuggling offences per 100,000 inhabitants	103	125.0 1254	0.319	1 114	28.57			
Drug production and sale per 100,000 inhabitants	103	63.07	27.98	5259	97.00			
Exploitation of prostitution per 100,000 inhabitants	103	4767	$\frac{1}{1}$ 729	3 611	8 146			
Distraints per 1 000 inhabitants aged 18 years and older	103	8 026	3434	7238	13.47			
Distraints per 1,000 families	$103 \\ 103$	17.06	7.393	15.12	27.59			
Public Sector Activity								
Value of public works started (pct of VA)	103	17.36	4.517	10.23	25.22			
Value of public works started by Provincial institutions (pct of VA)	103	0.867	0	0.267	1.764			
Value of public works started in the construction sector (pet of VA)	103	3 113	1.042	2.477	5 525			
Value of public works completed (net of VA)	103	12 30	5 151	0.825	20.30			
Value of public works completed by Provincial institutions (net of VA)	103	0.644	0.101	0.205	1 631			
Percentage politicians with at least secondary education	103	0.044	0 0200	0.290	0.0271			
Ratio of naid to committed expanses	100	7758	73.80	77.89	80.40			
Deficit par capita in ouros	102	19.17	2 880	11.62	00.49 99.89			
Crowth rate of deficit ner capita in surge (x100)	100	5 020	0.009 100 1	0.717	22.02 14.05			
Growth rate of dencit per capita in euros (×100)	103	-5.030	-108.1	-0.117	14.00			

Notes: Table A1 describes the sources and years available of each variable.

5 Surname distributions and the ICS

We use the Italian tax records described in Section 4.1 to obtain the surname distributions of Italian taxpayers for each province. To our knowledge, this is the most complete data set with (anonymised) surnames available for Italy, the closest to a census. To the extent that those distributions – the complex result of fertility processes, (assortative) mating and migration patterns – are similar, any differences in the ICS reflect differences in intergenerational mobility.

To investigate the similarity of the surname distributions across provinces, we exploit the well-known result that such distributions can be approximated very precisely by the Pareto distribution, which is uniquely characterised by two simple moments, the Gini coefficient and the number of persons per surname (Fox and Lasker (1983)). In other words, each pair of Gini coefficient and number of persons per surname uniquely identifies one surname distribution. We then calculate these two moments for each province and plot them in Panel (a) of Figure 1. If surnames were distributed identically in all provinces, the dots in the figure would overlap perfectly. This is clearly not the case in our data. While the Gini indices seem relatively homogeneous within the range [0.6, 0.9], the average number of persons per surname spans between 10 and 50.

To enhance cross-province comparability, we then concentrate on the right tail of the distribution of surnames; that is, we focus on the individuals whose surnames are shared by less than a certain number of people (we experiment with 30, 25, 20 and 15). The idea behind this strategy is that, for these sub-populations, surnames measure family linkages more precisely. Panels 1(b) to 1(e) in Figure 1 show the Gini coefficient and the number of persons per surname for various tails of the distribution. These figures show that, once the most frequent, and thus the least informative, surnames are dropped, the surname distributions are virtually identical across all Italian provinces.

Based on this evidence, we are quite confident that, when using the tails, surnames map family relationships in similar manner in all provinces and that the mapping from the ICS to income persistence is thus comparable across provinces. For this reason, our baseline ICS measure is based on individuals whose surnames are shared by less than 30 people in their province. We label this indicator ICS-30. Results are robust to this choice. In Appendix B, we

	N	Mean	St.Dev.	<u>1</u>	Percentile 50	s 90
ICS based on taxable income, ICS based on taxable income, tail 30 (baseline) ICS based on taxable income, tail 25 ICS based on taxable income, tail 20 ICS based on taxable income, tail 15	$103 \\ 103 \\ 103 \\ 103 \\ 103 \\ 103$	$\begin{array}{c} 0.0247 \\ 0.0456 \\ 0.0478 \\ 0.0505 \\ 0.0540 \end{array}$	$\begin{array}{c} 0.0087 \\ 0.0171 \\ 0.0179 \\ 0.0190 \\ 0.0205 \end{array}$	$\begin{array}{c} 0.0151 \\ 0.0289 \\ 0.0311 \\ 0.0332 \\ 0.0351 \end{array}$	$\begin{array}{c} 0.0236\\ 0.0389\\ 0.0406\\ 0.0426\\ 0.0456\end{array}$	$\begin{array}{c} 0.0370\\ 0.0724\\ 0.0751\\ 0.0802\\ 0.0842 \end{array}$

TABLE 5. ICS measures based on taxab	e income: descr	iptive statistics
--------------------------------------	-----------------	-------------------

Source: 2005 Italian tax records. Sample: males aged 16-100 years old.

also show results using the full ICS – calculated on the entire distribution of surnames – and using the *Local* ICS-30, that is, the ICS computed on individuals whose surname contains less than 30 people and who belong to the 50% of the population with the most local surnames to partially account for differences in migration patterns across provinces (see Section 2.2).

5.1 Empirical measures of the ICS

This section presents the empirical estimates of the mobility measures described in Section 2. Descriptive statistics for ICS measures based on taxable income are reported in Table 5. The first row refers to the ICS calculated on the full population, and the other rows report the ICS restricting the population to the individuals with the least frequent surnames (i.e. those containing less than 30, 25, 20, and 15 persons). Overall, the table shows that there is substantial variation in the ICS across provinces: the ICS-30 (our baseline measure) of the province at the 90th percentile (Udine) is 2.5 times higher than the ICS of the province at the 10^{th} percentile (Agrigento). Not surprisingly, the level of the ICS monotonically increases when focusing on more and more infrequent surnames, because these are the ones that are the most informative about family linkages.

Figure 2 provides a geographical breakdown of the estimates and shows that mobility increases when moving from the South towards the North of the country. Identifying the exogenous drivers of this geographical pattern is beyond the scope of this paper. Instead, we exploit the large geographical heterogeneity across Italian provinces to study how social mobility correlates with a number of macroeconomic outcomes (in Section 6), without necessarily making causal claims.

(a) All Individuals

(b) Individuals with surnames with < 30 people

(d) Individuals with surnames with <20 people

(c) Individuals with surnames with <25 people

(e) Individuals with surnames with <15 people

FIGURE 1. Comparability of surname distributions across provinces.

FIGURE 2. Social mobility (ICS-30) across Italian provinces

	Ν	Mean	St.Dev.	I	Percentile 50	s 90
ICS based on taxable income, local ICS based on taxable income, local and tail 30 ICS based on taxable income, local and tail 25 ICS based on taxable income, local and tail 20 ICS based on taxable income, local and tail 15	$103 \\ 103 \\ 103 \\ 103 \\ 103 \\ 103$	$\begin{array}{c} 0.0243 \\ 0.0507 \\ 0.0546 \\ 0.0587 \\ 0.0643 \end{array}$	$\begin{array}{c} 0.0102 \\ 0.0195 \\ 0.0209 \\ 0.0221 \\ 0.0250 \end{array}$	$\begin{array}{c} 0.0124 \\ 0.0326 \\ 0.0340 \\ 0.0385 \\ 0.0414 \end{array}$	$\begin{array}{c} 0.0219 \\ 0.0463 \\ 0.0501 \\ 0.0525 \\ 0.0586 \end{array}$	$\begin{array}{c} 0.0399\\ 0.0721\\ 0.0747\\ 0.0826\\ 0.0895 \end{array}$

TABLE 6. ICS measures based on taxable income and local surnames: descriptive statistics

Source: 2005 Italian tax records. Sample: males aged 16-100.

Table 6 shows descriptive statistics for ICS measures calculated for the fraction of individuals in the top 50% of the distribution of the LocalDegree(s, r) Index in every province. As discussed in Section 2.2, this approach allows us to (partially) purge the ICS from the effect of migration in the provinces of destination.²¹ From the second row on, we further restrict the population to the most infrequent surnames. Overall, we again see marked variation across provinces and a monotonically increasing pattern of the ICS as we restrict to more and more infrequent surnames. The geographical breakdown of the local ICS provides a picture that is similar to the one that emerges from Figure 2.

Table 7 displays the pairwise correlations between all the ICS measures shown in Tables 5 and 6. Correlations are all very high and all significantly different from zero. We find particularly reassuring that the ICS measures based on local surnames correlate very strongly with their analogues based on both local and non-local surnames. This result suggests that differential migration patterns across provinces are unlikely to be a major concern.

5.1.1 Correlation between ICS and traditional measure of IM

In this section, we compare our ICS measure with a traditional measure of intergenerational mobility. For this comparison, we use the *Survey on Household Income and Wealth* (SHIW) from the Bank of Italy, which consists of repeated cross sections and includes some retrospective information on fathers' characteristics. This data set has been used by a number of studies to obtain measures of intergenerational mobility constructed on the basis of the traditional

²¹We will further address this problem in Section 6 including a North/South dummy in the regressions of the ICS on aggregate province-level outcomes and controlling for provincial migration patterns.

TABLE	7.	Pairwise	correlations	across	ICS	measures
-------	----	----------	--------------	-------------------------	-----	----------

	Full ICS	ICS-30	ICS-25	ICS-20	ICS-15	Local ICS	Local ICS-30	Local ICS-25	Local ICS-20	Local ICS-15
Full ICS ICS-30 ICS-25 ICS-20 ICS-15	$\begin{array}{c} 1.0000\\ 0.7010\\ 0.6961\\ 0.6948\\ 0.6908\end{array}$	$\begin{array}{c} 1.0000 \\ 0.9960 \\ 0.9941 \\ 0.9870 \end{array}$	$1.0000 \\ 0.9956 \\ 0.9893$	$1.0000 \\ 0.9934$	1.0000					
Local ICS Local ICS-30 Local ICS-25 Local ICS-20 Local ICS-15	$\begin{array}{c} 0.9077 \\ 0.6441 \\ 0.6328 \\ 0.6150 \\ 0.5745 \end{array}$	$\begin{array}{c} 0.5369 \\ 0.8805 \\ 0.8737 \\ 0.8713 \\ 0.8442 \end{array}$	$0.5299 \\ 0.8750 \\ 0.8718 \\ 0.8693 \\ 0.8436$	$0.5316 \\ 0.8739 \\ 0.8698 \\ 0.8715 \\ 0.8475$	$\begin{array}{c} 0.5339 \\ 0.8672 \\ 0.8673 \\ 0.8721 \\ 0.8548 \end{array}$	$\begin{array}{c} 1.0000\\ 0.5779\\ 0.5679\\ 0.5495\\ 0.5076\end{array}$	$1.0000 \\ 0.9935 \\ 0.9875 \\ 0.9686$	$1.0000 \\ 0.9923 \\ 0.9774$	$1.0000 \\ 0.9849$	1.0000

Notes: Full ICS refers to the ICS calculated with the full male population. All other ICS are calculated with the relevant tail of the surname distribution. Local ICS is calculated with only the 50% of the population with the most local surnames. Source: 2005 Italian tax records. Sample: males aged 16-100.

regression of children's outcomes on fathers' outcomes (Piraino, 2007; Mocetti, 2007; Checchi, Fiorio, and Leonardi, 2013).²²

Unfortunately, given the limited sample size, the SHIW is not representative at the province level and codes for the province of residence are not distributed with the data. Hence, we can only calculate the traditional measure of mobility – following Checchi, Fiorio, and Leonardi (2013) – at the more aggregate level of the 20 Italian regions, which can be further aggregated into five macro-areas (North-West, North-East, Centre, South, Islands). We then also recalculate the ICS at the same geographical level (region or macro-area) and compare the two sets of indicators. Moreover, the retrospective information on fathers that is collected in the SHIW does not include income; hence, we can only compute the traditional intergenerational correlation coefficient from a regression of children's years of schooling on fathers' years of schooling.

The results are displayed in Table 8. Despite the small sample size and the rather different outcome indicators, our surname-based measure of IM and the traditional fathers-children coefficients are always positively correlated. The correlation is quite high when we focus on the five macro areas (Table 8, top panel), although of course the very limited sample size does not allow for reaching conventional levels of statistical significance. When we disaggregate results at the level of the 20 regions, correlations are still positive, though lower (Table 8, middle panel). This is not surprising because estimates of the traditional measures are based

²²The only other data source used to estimate mobility in Italy is a survey conducted in 1985 on occupations with retrospective information on parents (Checchi, Ichino, and Rustichini, 1999).

TABLE 8.	Pairwise	correlations	between ICS	and	traditional	intergenera	tional	elasticit	ΰV
TUDDD	T 0011 11 10 0	COTTOTOTOTO	N 0 0 0 1 0 0 1 1 0 N	COLL OF	01000101010000	THE OF A CHICK OF	OTO TTOUT	0100001010	~ 7
									• /

	Full ICS	ICS-30	ICS-25	ICS-20	ICS-15
Traditional IM measure	$\begin{array}{c} 0.7995\\ (0.1045) \end{array}$	$\begin{array}{c} 0.7301 \\ (0.1614) \end{array}$	$\begin{array}{c} 0.7103 \\ (0.1788) \end{array}$	$0.7007 \\ (0.1875)$	$0.7216 \\ (0.1688)$
Level aggregation & observations	5 areas	5 areas	5 areas	5 areas	5 areas
Traditional IM measure	$\begin{array}{c} 0.2544 \\ (0.2790) \end{array}$	$\begin{array}{c} 0.2351 \\ (0.3185) \end{array}$	$\begin{array}{c} 0.2398 \\ (0.3085) \end{array}$	$\begin{array}{c} 0.2531 \\ (0.2816) \end{array}$	$0.2685 \\ (0.2523)$
Level aggregation & observations	20 regions	20 regions	20 regions	20 regions	20 regions
Traditional IM measure	$\begin{array}{c} 0.4620 \\ (0.0830) \end{array}$	0.6647^{*} (0.0069)	0.6836^{*} (0.0050)	0.6792^{*} (0.0054)	0.7070^{*} (0.0032)
Level aggregation Observations (exclude 5 regions with least observations)	20 regions 15 regions	20 regions 15 regions	20 regions 15 regions	20 regions 15 regions	20 regions 15 regions

Pairwise correlations and *p*-values in parentheses. (*) indicates significance at the 5% level or better. The traditional IM elasticity as in Checchi, Fiorio, and Leonardi (2013). ICS measures as in Tables 5 and 6. Full ICS refers to the ICSs calculated with the full male population ICS. All other ICS are calculated with the relevant tail of the surname distribution.

on smaller samples and thus are more imprecise. Yet, when we drop 25% of the regions with the least number of observations in the SHIW (these are very small regions with a small number of observations), the correlations become significant (Table 8, bottom panel). Overall, these results are reassuring because they indicate that the ICSs are indeed capturing mobility patterns across geographical areas. We can, thus, confidently use our province-level ICS to explore how social mobility correlates with a number of meaningful macro outcomes.²³

6 Intergenerational mobility and macroeconomic outcomes

We now turn to the analysis of the correlations between the ICS measures and our battery of macroeconomic outcomes. As we discussed in section 4.2, we organise these many outcomes in three groups. The first group (section 6.1) includes value added per capita, educational attainment, inequality and social capital. The second category (section 6.2) refers to labour market outcomes and the degree of trade openness in each province. The third group (section 6.3) includes, instead, a number socio-political outcomes such as life expectancy, suicide rates, crime rates and public sector activity.

 $^{^{23}}$ In a very recent paper Acciari, Polo, and Violante (2016) calculate standard mobility measures for Italy using administrative data. The authors have correlated our ICS measures with theirs and find that the correlation is high and highly significant.

6.1 Correlating Social Mobility and Key Variables

Table 9 presents the coefficients obtained from regressing the ICS-30 on the first group of outcomes.²⁴ Column 1 displays the coefficients from simple univariate regressions, in column 2 we add controls for value added per capita (when looking at other outcomes). In column 3 we add a North/South dummy and in column 4 we add controls for net migration flows. ²⁵

Recalling that a higher ICS implies lower mobility, the table shows that outcomes such as value added and social capital are consistently positively and significantly related to higher mobility; inequality, however, as measured from our tax data by the standard deviation of log(1+taxable income), and low education levels are related to lower mobility. This pattern also emerges consistently when controlling for value added per capita (column 2), a North/South dummy (column 3) or when controlling for migration flows (column 4), suggesting that the results are not driven by the well-known Italian North-South divide. Figures 3 and 4 show our regressions results graphically.

It is particularly noteworthy that the correlation between the 1981 value added and mobility is significant and of the same order of magnitude as the average between 1999 and 2004. Given that IM is presumably a very slow-moving process, this evidence hints at the fact that our correlations are not driven by some omitted variable simultaneously affecting both mobility and economic performance, as one would clearly worry when looking at our results using value added from the early 2000s. Our ICSs are measured almost 25 years after 1981, thus we strongly corroborate the findings in Chetty, Hendren, Kline, and Saez (2014), who find similar patterns using indicators of mobility and economic outcomes that are measured about 10 years apart.

²⁴Recall that the ICS-30 is calculated on male individuals whose surname contains at most 30 people. All of our results are robust to different definitions of the ICS. Results using the ICS calculated on all male individuals and results restricted to males with a local surname are in Appendix B. Results also including females and results excluding self-employed workers are in Appendix C. We refer the reader to the working paper version for results restricted to individuals whose surname contains less than 15, 20 and 25 people.

²⁵Northern provinces are Alessandria, Aosta, Arezzo, Asti, Belluno, Bergamo, Biella, Bologna, Bolzano, Brescia, Como, Cremona, Cuneo, Ferrara, Firenze, Forli, Genova, Gorizia, Grosseto, Imperia, La Spezia, Lecco, Livorno, Lodi, Lucca, Mantova, Massa Carrara, Milano, Modena, Novara, Padova, Parma, Pavia, Piacenza, Pisa, Pistoia, Pordenone, Prato, Ravenna, Reggio Emilia, Rimini, Rovigo, Savona, Siena, Sondrio, Torino, Trento, Treviso, Trieste, Udine, Varese, Venezia, Verbania, Vercelli, Verona, Vicenza. Southern provinces are Agrigento, Ancona, Ascoli Piceno, Avellino, Bari, Benevento, Brindisi, Cagliari, Caltanissetta, Campobasso, Caserta, Catania, Catanzaro, Chieti, Cosenza, Crotone, Enna, Foggia, Frosinone, Isernia, Laquila, Latina, Lecce, Macerata, Matera, Messina, Napoli, Nuoro, Oristano, Palermo, Perugia, Pesaro Urbino, Pescara, Potenza, Ragusa, Reggio Calabria, Rieti, Roma, Salerno, Sassari, Siracusa, Taranto, Teramo, Terni, Trapani, Vibo Valentia, Viterbo.

	(1)	(2)	(3)	(4)
Feonomic activity	(1)	(2)	(0)	(1)
Value added per capita (avg 1999-2004)	-0.030 $(0.004)^{***}$		-0.019 $(0.007)^{***}$	-0.011 $(0.006)^{**}$
Value added per capita (1981)	$(0.005)^{***}$		$(0.009)^{***}$	-0.026 (0.009)***
Inequality Standard deviation of log income	$\begin{array}{c} 0.037 \\ (0.004)^{***} \end{array}$	0.038 $(0.007)^{***}$	$0.046 \\ (0.008)^{***}$	0.025 $(0.006)^{***}$
Schooling (lack of) Individuals aged 25-64 with at most 8 years of schooling	$0.068 \\ (0.013)^{***}$	$0.040 \\ (0.013)^{***}$	$0.052 \\ (0.012)^{***}$	$0.032 \\ (0.013)^{**}$
Early school dropout aged 18-24	$0.024 \\ (0.005)^{***}$	$\begin{array}{c} 0.017 \\ (0.004)^{***} \end{array}$	$0.020 \\ (0.004)^{***}$	$\begin{array}{c} 0.015 \\ (0.004)^{***} \end{array}$
Social capital				
Voter turnout (Chamber of Deputies)	-0.171 (0.023)***	-0.124 (0.032)***	-0.128 (0.029)***	-0.063 (0.042)
Voter turnout (Senate of the Republic)	-0.084 (0.021)***	-0.025 (0.023)	-0.033 (0.022)	$\begin{array}{c} 0.012 \\ (0.023) \end{array}$
Voter turnout (European Parliament)	-0.108 $(0.015)^{***}$	-0.077 $(0.016)^{***}$	$^{-0.081}_{(0.015)^{***}}$	$^{-0.052}_{(0.018)^{***}}$
Newspaper sales per capita	-0.008 $(0.002)^{***}$	-0.004 (0.002)*	$(0.004)^{(0.002)**}$	-0.003 (0.002)
Controls:	NO	VDC	NO	NO
Value added per capita	NO	YES	NO	NO
North/South dummy Net migration flows (avg. 1999-2002)	NO	NO	Y ES NO	NO VES
avg. 1333-2002)	10	10	10	

TABLE 9.	Relationship	between	the ICS-30	and key	outcomes
----------	--------------	---------	------------	---------	----------

Notes: Each coefficient is obtained from a separate regression of the ICS-30 on each variable. ICS-30 refers to the ICS calculated including only surnames that contain at most 30 people (see Section 5). The number of observations equals the number of provinces (103) in all regressions, except those that refer to 1981, when the number of provinces was equal to 95. Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

The relationship between intergenerational mobility and inequality indeed has a special interest on its own. A clear positive correlation between the intergenerational elasticity of earnings and the degree of cross-sectional inequality – named the "Great Gatsby Curve" – exists across countries.²⁶ This correlation has become the focus of a large public debate, which often interprets it as the result of institutional differences: inequality and the prevalence of inheritance being low in countries with larger government intervention, as in the Nordic countries, and high in *laissez-faire* societies such as the Anglo-Saxon countries. The plot of the Italian Great Gatsby curve in Figure 4 clearly shows that in provinces where income inequality is lower, inheritance is less prevalent. This result is noteworthy because all Italian provinces share the same institutional framework: intergenerational mobility correlates with low inequality even holding constant the institutional setup.

Figure 5 summarizes our results so far by plotting the value of the regression coefficients (and their p-values) of the ICS-30 on each macro variable displayed in column 1 of Table 9.

6.2 Correlating social mobility and other economic outcomes

In Table 10 we report the correlations between the ICS and the second category of outcomes, namely labour market indicators and trade openness. Results clearly show that intergenerational mobility correlates positively with "good" economic outcomes, such as employment and openness, and negatively with "bad" economic outcomes, even after controlling for the level of economic activity (column 2), differences (observed and unobserved) between the North and the South of the country (column 3) or controlling for net migration flows (column 4).

Figure 6 summarizes these correlations by plotting the value of the regression coefficients (and their *p*-values) of the ICS-30 on each macro variable displayed in column 1 of Table 10, respectively. In order to provide a visual representation of this result, we classify all the variables into good and bad outcomes (see notes in Figure 6). It is clear from those graphs that mobility is high in places where economic outcomes are good.

²⁶The curve was introduced in a 2012 speech by Alan Krueger, former chairman of the Council of Economic Advisers (Krueger, 2012) using data from Miles Corak (Corak, 2013). The name was coined by former CEA staff economist Judd Cramer in reference to the upwardly mobile character in F. Scott Fitzgerald's novel.

(a) value added per capita

(c) Individuals 25-64 with at most 8 years of schooling

(e) Voter turnout in chamber of deputies elections

(g) voter turnout in Senate of the Republic elections

(b) value added per capita in 1981

(d) Early school dropout aged 18-24

(f) Voter turnout in EU elections

(h) Newspaper sales per capita

FIGURE 3. Correlation between mobility (ICS-30) and key economic outcomes

	(1)	(2)	(3)	(4)
Economic activity	(1)	(2)	(0)	(4)
Protested cheques per 1.000 inhabitants	0.009	0.004	0.001	0.003
	$(0.002)^{***}$	(0.002)	(0.003)	(0.002)
	(0.00-)	(0.00-)	(01000)	(01002)
Labour market outcomes				
Unemployment rate	0.015	0.013	0.014	0.008
	$(0.002)^{***}$	$(0.003)^{***}$	$(0.003)^{***}$	$(0.003)^{**}$
Unemployment rate (males)	0.013	0.012	0.013	0.007
	$(0.002)^{***}$	$(0.003)^{***}$	$(0.003)^{***}$	$(0.003)^{**}$
Unemployment rate (females)	0.016	0.014	0.014	0.008
$\mathbf{U}_{\mathbf{r}} = \mathbf{U}_{\mathbf{r}} + $	$(0.002)^{4.4.4}$	$(0.004)^{0.004}$	$(0.003)^{++++}$	$(0.003)^{++}$
Unemployment rate (age 15-24)	(0.014)	(0.008)	(0.009)	(0.004)
Long torm unormalorment rate (12 months on more)	$(0.002)^{111}$	$(0.003)^{++}$	$(0.003)^{+++}$	(0.003)
Long-term unemployment rate (12 months or more)	(0.010)	(0.000)	(0.007)	(0.003)
Employment rate	(0.002)	-0.066	-0.066	(0.002)
	$(0.009)^{***}$	$(0.015)^{***}$	$(0.014)^{***}$	$(0.016)^{***}$
Employment rate (males)	-0.098	-0.059	-0.065	-0.024
	$(0.014)^{***}$	$(0.023)^{***}$	$(0.022)^{***}$	(0.023)
Employment rate (females)	-0.045	-0.046	-0.045	-0.034
r (<i>j</i> (<i>i</i> (<i>i</i>))	$(0.005)^{***}$	$(0.008)^{***}$	$(0.008)^{***}$	$(0.009)^{***}$
Employment rate (age 15-24)	-0.024	-0.018	-0.021	-0.011
	$(0.003)^{***}$	$(0.005)^{***}$	$(0.005)^{***}$	$(0.005)^{**}$
Employment rate (high school, aged 25-64)	-0.102	-0.111	-0.113	-0.084
	$(0.010)^{***}$	$(0.018)^{***}$	$(0.018)^{***}$	$(0.020)^{***}$
Employment rate (college graduate, aged 25-64)	-0.155	-0.103	-0.122	-0.068
	$(0.022)^{***}$	$(0.032)^{***}$	$(0.040)^{***}$	$(0.029)^{**}$
Participation rate (age 15-64)	-0.106	-0.089	-0.095	-0.057
	$(0.013)^{***}$	$(0.021)^{***}$	$(0.021)^{***}$	$(0.022)^{**}$
Participation rate (age 15-64 males)	-0.159	-0.027	-0.028	0.040
Douticipation note (and 15 64 formulas)	$(0.037)^{++++}$	(0.045)	(0.047)	(0.044)
Participation rate (age 15-04 lemales)	-0.033	-0.032	-0.005 ***	-0.038
Participation rate (age group 15.24)	(0.000)	(0.009)	(0.009)	(0.010)
1 attricipation rate (age group 15-24)	(0.007)***	(0.024)	(0.025)	(0.013)
	(0.001)	(0.005)	(0.010)	(0.005)
Openness				
Imports to value added	-0.007	-0.002	-0.002	-0.001
	$(0.002)^{***}$	(0.002)	(0.002)	(0.002)
Exports to value added	-0.009	-0.006	-0.007	-0.004
	$(0.001)^{***}$	$(0.002)^{***}$	$(0.002)^{***}$	$(0.002)^{***}$
Controls:				
Value added per capita	NO	YES	NO	NO
North/South dummy	NO	NO	YES	NO
Net migration flows (avg. 1999-2002)	NO	NO	NO	YES

TABLE 10. Relationship between the ICS-30 and other economic outcomes

Notes: Each coefficient is obtained from a separate regression of the ICS-30 on each variable. ICS-30 refers to the ICS calculated including only surnames that contain at most 30 people (see Section 5). Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

FIGURE 4. The Italian Great Gatsby Curve. Scatter plot of ICS-30 and inequality

6.3 Correlating social mobility and other socio-political outcomes

We now turn to our third category of outcomes, namely socio-political variables other than social capital. Results are presented in Table 11 using the same format of the previous tables. The outcomes are classified into four broad groups: indicators of life expectancy, crime rates, suicide rates and public sector activity.

Contrary to the results of the previous sections, the estimates in Table 11 do not seem to follow any clear path. Social mobility correlates with higher life expectancy for females, but not for males. There is some indication of a correlation with higher suicide rates, which nevertheless disappears when controlling for value added per capita, for the North/South dummy or migration flows. The same happens for crime: correlations are mostly, but not always, positive in column (1) and become largely insignificant in columns (2) and (3). Regarding the activity of the public sector, we find that higher mobility correlates negatively with the value of public works started and completed, and with a rough measure of the quality of local politicians (the proportion of politicians with at least a secondary education). Our data do not show any association with the ratio of paid to committed expenses nor with the local budget deficit (in both

T 10	(1)	(2)	(3)	(4)
Life expectancy at birth, males	-0.018	0.045	-0.110	0.182
Life expectancy at 65, males	$\begin{pmatrix} 0.154 \\ 0.048 \end{pmatrix}$	$\begin{pmatrix} 0.130 \\ 0.026 \end{pmatrix}$	$(0.132) \\ -0.019$	$(0.121) \\ 0.069$
Life expectancy at hirth females	(0.054)	(0.046)	(0.048)	(0.042)
Life expectancy at 65 females	$(0.173)^{***}$	$(0.165)^*$	$(0.157)^{***}$	(0.164)
The expectancy at 05, remains	$(0.051)^{***}$	$(0.054)^{***}$	$(0.051)^{***}$	(0.055)
Crime Rates	0.012	0.002	0.009	0.007
N. L. K. S.	$(0.006)^{**}$	(0.005)	(0.002)	(0.005)
Violent crimes	(0.002)	(0.003)	(0.003)	(0.002)
Thefts	-0.010 $(0.004)^{**}$	-0.001 (0.004)	$0.000 \\ (0.004)$	-0.002 (0.003)
Other crimes	-0.006	-0.007 (0.006)	-0.003 (0.006)	-0.013 $(0.005)^{**}$
Murders per 100,000 inhabitants	0.007	(0.002)	(0.004)	0.000
Sleight of hand per 100,000 inhabitants	-0.006	-0.001	-0.002	-0.002
Theft with tear per 100,000 inhabitants	0.002	0.003	0.003	0.002
Burglaries per 100,000 inhabitants	$(0.002)^{++}$ -0.022	$(0.001)^{0.001}$	$(0.002)^{4.4}$ -0.014	(0.001) -0.009
Theft of parked cars per 100,000 inhabitants	$(0.004)^{***}$ -0.013	$(0.004)^{***}$ -0.004	$(0.004)^{***}$ -0.005	$(0.004)^{**}$ -0.002
Car thefts per 100.000 inhabitants	$(0.003)^{***}$ 0.006	$\begin{pmatrix} 0.003 \\ 0.003 \end{pmatrix}$	$\begin{pmatrix} 0.003 \\ 0.003 \end{pmatrix}$	$(0.003) \\ 0.000$
Scame per 100 000 inhabitants	$(0.002)^{***}$	(0.002)	(0.002)	(0.002)
Secure per 100,000 initialitation	$(0.004)^{***}$	$(0.004)^{*}$	$(0.004)^{**}$	$(0.004)^{**}$
Description of the second seco	$(0.001)^{***}$	$(0.001)^{**}$	$(0.001)^{**}$	(0.001)
Drug production and sale for 100,000 inhabitants	(0.004)	(0.001)	(0.001)	(0.002)
Exploitation of prostitution per 100,000 inhabitants	-0.011 $(0.002)^{***}$	-0.007 $(0.002)^{***}$	-0.008 $(0.002)^{***}$	-0.006 $(0.002)^{***}$
Distraints per 1,000 inhabitants aged 18+	0.003 (0.003)	0.001 (0.003)	0.000 (0.003)	0.001 (0.002)
Distraints per 1,000 families	0.005' (0.003)	(0.002)	(0.000)	(0.002)
Suicides Rates	× /	~ /	· · ·	
Suicides per 100,000 - Total	-0.019 (0.004)***	-0.010 (0.004)***	-0.010 (0.004)**	-0.006
Suicides per 100,000 population - Males	-0.006	-0.002	-0.001	0.000
Suicides per 100,000 population - Females	-0.007	-0.003	-0.001	-0.001
Suicide attempts per 100,000 - Total	-0.009	(0.002) -0.001	(0.002) 0.000	(0.002) 0.000
Suicide attempts per 100,000 - Males	$(0.003)^{***}$ -0.006	(0.003) -0.001	$(0.003) \\ 0.000$	$(0.003) \\ -0.001$
Suicide attempts per 100,000 - Females	$(0.002)^{***}$ -0.003	(0.002) -0.001	$\begin{pmatrix} 0.002 \\ 0.000 \end{pmatrix}$	(0.002) -0.001
<i>'</i>	$(0.002)^{**}$	(0.002)	(0.002)	(0.001)
Public sector activity Value of public works started (pct VA)	0.004	0.002	0.004	0.004
Value of public works started by provinces (pet VA)	(0.002)**	(0.002)	(0.002)**	$(0.002)^{***}$
Value of public works started by provinces (pct VA)	$(0.001)^{***}$	$(0.001)^{***}$	$(0.001)^{***}$	$(0.003)^{***}$
value of public works (construction sector, pct VA)	(0.008) $(0.002)^{***}$	(0.006) $(0.002)^{***}$	(0.008) (0.002) ***	(0.006) $(0.002)^{***}$
Value of public works completed (pct VA)	$0.007 \\ (0.003)^{**}$	0.000 (0.003)	0.004 (0.003)	0.002 (0.002)
Value of public works completed by provinces (pct VA)	0.006	(0.005)	(0.005)	(0.004)
Percentage politicians with at least secondary education	0.035 (0.014)**	0.019	0.025	0.017 (0.012)
Ratio of paid to committed expenses	-0.035	-0.011	-0.005	-0.003
Deficit per capita in euro	(0.048) 0.001	(0.041) 0.002	(0.042) 0.002	(0.038)
Growth rate of deficit per capita in euro	(0.002) 0.001	(0.002) 0.000	(0.002) 0.001	(0.002) 0.000
-	(0.001)	(0.001)	(0.001)	(0.001)
Controls: Value added per capita	NO	YES	NO	NO
North/South dummy	NO	NO	YES	NO
iver ingration nows (avg. 1999-2002)	NU	NU	NU	1 ES

TABLE 11.	Rel	lationsl	nip	between	the	ICS-30	and	other	socio-	political	outcomes
-----------	-----	----------	-----	---------	-----	--------	-----	-------	--------	-----------	----------

Notes: Each coefficient is obtained from a separate regression of the ICS-30 on each variable. ICS-30 refers to the ICS calculated including only surnames that contain at most 30 people (see Section 5). Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

FIGURE 5. Coefficients and p-values from separate regressions of the ICS-30 on the outcomes displayed in column 1 of Table 9

levels and growth rate).

Overall, no clear pattern emerges between intergenerational mobility and our array of socialpolitical variables other than social capital. This result is perhaps not so surprising given that the interaction between mobility and these socio-political processes is presumably much more complex and unpredictable than the interaction with economic outcomes.

7 Conclusions

An important recent trend in the literature on intergenerational mobility investigates the correlation between indicators of social mobility and a variety of meaningful aggregate outcomes. Agreement in this area is still far from being reached. Chetty, Hendren, Kline, and Saez (2014) and Corak (2013) find that social mobility differs across geographical areas and co-moves positively with economic activity and social capital, and co-moves negatively with inequality. Others, like Clark (2014), suggest that mobility is low and constant, and thus unrelated to aggregate variables.

FIGURE 6. Coefficients and *p*-values from separate regressions of the ICS-30 on the outcomes displayed in column 1 of Table 10.

Notes: Good economic outcomes include: *Employment rate* and *Participation rate* for the different population groups, *Imports to value added* and *Exports to value added*. Bad economic outcomes include: *Protested cheques per 1000 inhabitants* and *Unemployment rate* for the different population groups (see Table A1).

This paper uses within-country variation in social mobility and macro outcomes to contribute to this debate. We show that Italian provinces exhibit a large degree of variability in social mobility. This is particularly noteworthy in a centralised country like Italy, where the institutional framework is the same for all provinces. Thus, policies and political institutions are unlikely to be the main drivers of geographical differences in social mobility.

Our exercise shows that mobility correlates positively with economic activity, education and social capital, and negatively with inequality. Moreover, it correlates positively with all desirable economic outcomes and negatively with undesirable ones. The clear and systematic pattern that we document for economic outcomes and social capital does not emerge when we look at other socio-political variables.

Although our approach does not allow us to make clear causal claims, we do improve over previous studies insofar as we can hold constant a vast number of institutional factors. We find that keeping constant institutions and policies, there are large differences in IM across provinces. Moreover, IM in Italian provinces correlates with aggregate outcomes in much the same manner

FIGURE 7. Coefficients and *p*-values from separate regressions of the ICS-30 on the outcomes displayed in column 1 of Table 11

as in Chetty, Hendren, Kline, and Saez (2014) for the United States. This necessarily implies that something beyond institutions and policies helps to shape IM and its relationship with aggregate outcomes. This, of course, does not mean that policies do not affect IM, but it does suggest a large degree of complexity in the socioeconomic equilibria that shape the workings of society.

References

- Acciari, P., A. Polo, and G. L. Violante (2016). 'And yet, it moves': Intergenerational mobility in Italy. Mimeo New York University.
- Anelli, M. and G. Peri (2013). Peer Gender Composition and Choice of College Major. NBER Working Papers 18744, National Bureau of Economic Research, Inc.
- Aydemir, A. and H. Yazici (2015). Intergenerational education mobility and the level of development: Evidence from turkey. Mimeo, Sabanci University.
- Barone, G. and S. Mocetti (2016). Intergenerational mobility in the very long run: Florence 1427-2011. Working Papers 1060, Bank of Italy.
- Björklund, A., T. Eriksson, M. Jäntti, O. Raaum, and E. Österbacka (2002). Brother correlations in earnings in Denmark, Finland, Norway, and Sweden compared to the United States. *Journal of Population Economics* 15(4), 757–772.

FIGURE 8. Geographical patterns by province

- Björklund, A. and M. Jäntti (1997). Intergenerational income mobility in Sweden compared to the United States. *American Economic Review* 87(5), 1009–1018.
- Björklund, A. and K. G. Salvanes (2011). Education and family background: Mechanisms and policies. in E. Hanushek, S. Machin, and L. Woessmann (eds.), Handbook of the Economics of Education, Volume 3(3), pp. 201-247.
- Black, S. E. and P. J. Devereux (2011). *Recent Developments in Intergenerational Mobility*. in Orley C. Ashenfelter and David Card (eds.), Handbook of Labor Economics, Volume 4B, Amsterdam: North-Holland, pp. 1487-1541.
- Braga, M., M. Paccagnella, and M. Pellizzari (2016). The impact of college teaching on students' academic and labor market outcomes. *Journal of Labor Economics* 34(3), 781–822.
- Checchi, D., C. V. Fiorio, and M. Leonardi (2013). Intergenerational persistence in educational attainment in Italy. *Economics Letters* 118, 229–232.
- Checchi, D., A. Ichino, and A. Rustichini (1999). More equal but less mobile? Education financing and intergenerational mobility in Italy and in the U.S. Journal of Public Economics 74(3), 351–93.
- Chetty, R., N. Hendren, P. Kline, and E. Saez (2014). Where is the land of opportunity? the geography of intergenerational mobility in the United States. *Quarterly Journal of Economics* 129(4), 1553–1623.
- Clark, G. (2014). The Son Also Rises: Surnames and the History of Social Mobility. Princeton University Press. With Neil Cummins and Yu Hao and Daniel Diaz Vidal.
- Collado, M. D., I. Ortuño-Ortín, and A. Romeo (2012). Long-run intergenerational social mobility and the distribution of surnames. Mimeo.
- Comi, S. (2003). Intergenerational mobility in Europe: evidence from ECHP. Departmental Working Papers 2003-03, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Corak, M. (2006). Do Poor Children Become Poor Adults? Lessons for Public Policy from a Cross Country Comparison of Generational Earnings Mobility. Research on Economic Inequality. Volume 13, Dynamics of Inequality, The Netherlands: Elsevier Press. Pages 143-188.
- Corak, M. (2013). Inequality from Generation to Generation: The United States in Comparison. Robert Rycroft editor, The Economics of Inequality, Poverty, and Discrimination in the 21st Century, ABC-CLIO.
- Couch, K. A. and T. A. Dunn (1997). Intergenerational correlations in labor market status: A comparison of the United States and Germany. *Journal of Human Resources* 32(1), 210–32.
- Diaz Vidal, D. (2014). A surname analysis of social mobility and assortative mating in Chile, 1920-2004. Mimeo.
- Fiorio, C. and F. D'Amuri (2005). Workers' tax evasion in italy. *Giornale degli Economisti e* Annali di Economia 64(2/3), 247–270.
- Fox, W. R. and G. W. Lasker (1983). The distribution of surname frequencies. *International Statistical Review 51 (1)*, 81–87.
- Gagliarducci, S. and T. Nannicini (2013, April). Do better paid politicians perform better? disentangling incentives from selection. *Journal of the European Economic Association* 11(2), 369–398.

- Grawe, N. D. (2004). Intergenerational mobility for whom? The experience of high- and lowearnings son in international perspective. in Miles Corak (ed.), Generational Income Inequality, Cambridge University Press, pp.58-89.
- Güell, M., M. Pellizzari, G. Pica, and J. V. Rodríguez Mora (2015). Correlating social mobility and economic outcomes. CEPR DP10496.
- Güell, M., J. V. Rodríguez Mora, and C. I. Telmer (2007). Intergenerational mobility and the informative content of surnames. CEPR Discussion Paper No. 6316.
- Güell, M., J. V. Rodríguez Mora, and C. I. Telmer (2014). The informational content of surnames, the evolution of intergenerational mobility and assortative mating. *The Review of Economic Studies*. doi: 10.1093/restud/rdu041.
- Krueger, A. B. (2012). The rise and consequences of inequality in the United States. Speech of the Chairman of Council of Economic Advisers at the Center for American Progress on January 12th, 2012.
- Mocetti, M. (2007). Intergenerational earnings mobility in Italy. The B.E. Journal of Economic Analysis & Policy 7, (Iss. 2 (Topics)), 1935–1682.
- Mocetti, S. and E. Viviano (2015). Looking behind mortgage delinquencies. Working Papers 999, Bank of Italy.
- Piraino, P. (2007). Comparable estimates of intergenerational income mobility in Italy. The B.E. Journal of Economic Analysis & Policy 7,(Iss. 2 (Topics)), 1935–1682.
- Solon, G. (2016). What do we know so far about multigenerational mobility? *Economic Journal, forthcoming.*
- Voster, K. (2014). Is the simple law of mobility really a law? Testing Clark's hypothesis. Mimeo. Michigan State University.

A Appendix: data sources and surname distributions across Italian provinces

Variables	Vears
Valiables	Tears
Key outcomes	1091
value added per capita	1981
Value added per capita	1999-2004
Individuals aged 25-64 with at most 8 years of schooling per 100 same age individuals	2004
Early school dropout aged 18-24 per 100 same age individuals	2004
Standard deviation of log income	2004
Voters turnout in the Chamber of Deputies per 100 voters	2006 and 2008
Voters turnout in the Senate of the Republic per 100 voters	2006 and 2008
Voters turnout in the European Parliament per 100 voters	2004
Newspaper sales per capita	2000-2004
Other economic outcomes	
Protested cheques per 1 000 inhabitants	1999-2005
Unomployment rate	1000 2004
Unemployment rate Malos	1000 2004
Unemployment rate - Males	1000 2004
Unemployment rate - remains	1999-2004
Unemployment rate (age 15-24)	1999-2004
Long-term unemployment rate (12 months or more)	2004
Employment rate	1999-2004
Employment rate - Males	1999-2004
Employment rate - Females	1999-2004
Employment rate (age 15-24)	1999-2004
Employment rate (high school, age 25-64)	2004
Employment rate (ast college graduate age 25-64)	2004
Destignation rate (are 15.64)	1000 2004
1 at the partial rate (age 10-04)	1999-2004
Participation rate (age 15-64) - Males	1999-2004
Participation rate (age 15-64) - Females	1999-2004
Participation rate (age 15-24)	1999-2004
Imports to value added	1999-2004
Exports to value added	1999-2004
Other socio-political outcomes	
Life expectancy at birth - Males	2002-2004
Life expectancy at 65 - Males	2002-2004
Life expectancy at birth - Females	2002-2004
Life expectancy at 65 - Females	2002-2004
Suicidae por 100 000 inhabitante Total	1000 2004
Suicidas per 100,000 inhabitants - Malas	1000
Suicides per 100,000 inhabitants - Males	1999
Suicides per 100,000 inhabitants - remains	1999
Suicide attempts per 100,000 innabitants - 10tal	1999-2004
Suicide attempts per 100,000 inhabitants - Males	1999
Suicide attempts per 100,000 inhabitants - Females	1999
Total crimes	1999-2004
Violent crimes	2004
Thefts	1999-2004
Other crimes	1999-2003
Murders per 100,000 inhabitants	2004
Sleight of hand per 100,000 inhabitants	1999-2004
Theft with tear per 100,000 inhabitants	1999-2004
Burglaries per 100 000 inhabitants	1999-2004
Theft of parked cars per 100,000 inhabitants	1999-2004
Car thefts per 100 000 inhabitants	1999-2004
Scame ner 100.000 inhabitants	1999-2003
Smussling offenges per 100,000 inhabitants	1000 2003
Drug and ution on allo nor 100,000 inhabitants	1000 2004
Even bit discussion and safe per 100,000 inhabitants	1999-2004
Exploration of prostitution per 100,000 inhabitants	1999-2004
Distraints per 1,000 innabitants aged 18 years and older	1999-2003
Distraints per 1,000 families	1999-2000 and 2003
Value of public works started (pct of VA)	2000
Value of public works started by Provincial institutions (pct of VA)	2000
Value of public works started in construction sector (pct of VA)	2000
Value of public works completed (pct of VA)	2000
Value of public works completed by Provincial institutions (pet of VA)	2000
Percentage politicians with at least secondary education	2000
Ratio of paid to committed expenses	2001
Definition paid to committee expenses	2000-2004 1002-2004
Denote per capita in Euros (χ^{100})	1990-2004

TABLE A1. Macro variables and years available

Growth rate of deficit per capita in Euros (×100) 1993-2004 Sources: Italian National Institute of Statistics (ISTAT) except Value added per capita in 1981 from Istituto Gugliemo Tagliacarne; Standard deviation of log income from 2005 Italian tax records; Newspaper sales from dati.adsnotizie.it; Ratio of paid to committed expenses and Deficit per capita from Gagliarducci and Nannicini (2013); Percentage of politicians with at least secondary education from the Ministry of Internal Affairs. Figure A1 plots the Lorenz curves of the surname distributions for 20 regions in Italy. The same graphs for the 103 provinces are available upon request.

FIGURE A1. Lorenz Curves of the Surname distributions in Italian Regions Notes: Vertical Axis: % of All Surnames; Horizontal Axis: % of Population in Descending Order of Surname Frequency.

B Appendix: robustness checks using alternative ICS measures

This appendix provides results using alternative ICS measures. Tables B1-B3 and Figure B1 show results using the ICS calculated on the full population of males aged 16-100 (i.e., not restricted to individuals whose surname contains less than 30 people). Tables B4-B6 and Figure B2 show results further restricting our baseline ICS to the most local surnames in each province, as described in Section 2.2. The results presented in the body of the paper carry over to these alternative ICS measures.

	(1)	(2)	(3)	(A)
Facnomia pativity	(1)	(2)	(0)	(4)
Value added per capita (avg 1999-2004)	-0.009 $(0.003)^{***}$		-0.008 $(0.004)**$	-0.011 $(0.006)^{**}$
Value added per capita (1981)	$(0.003)^{-0.012}$ $(0.003)^{***}$		(0.0051) -0.016 $(0.005)^{***}$	(0.000) (0.0026) $(0.009)^{***}$
Inequality Standard deviation of log income	$\begin{array}{c} 0.011 \\ (0.002)^{***} \end{array}$	0.012 (0.004)***	0.019 $(0.005)^{***}$	0.025 (0.006)***
Schooling (lack of) Individuals aged 25-64 with at most 8 years of schooling	0.013	0.003	0.009	0.032
Early school dropout (age 18-24)	(0.007) (0.005) $(0.003)^*$	(0.003) (0.003) (0.003)	(0.001) 0.004 (0.002)	(0.013) 0.015 $(0.004)^{***}$
Social capital				
Voter turnout (Chamber of Deputies)	-0.059 $(0.013)^{***}$	-0.052 (0.019)***	-0.060 $(0.017)^{***}$	-0.063 (0.042)
Voter turnout (Senate of the Republic)	(0.010) -0.032 $(0.011)^{***}$	-0.017 (0.013)	(0.011) -0.023 $(0.013)^*$	(0.012) (0.023)
Voter turnout (European Parliament)	-0.043 $(0.008)^{***}$	-0.037 $(0.009)^{***}$	-0.040 (0.009)***	-0.052 (0.018)***
Newspaper sales per capita	(0.002) $(0.001)^{**}$	-0.001 (0.001)	-0.001 (0.001)	-0.003 (0.002)
Controls:	NO	VEC	NO	NO
Value added per capita	NO	Y ES	NU	NO
Not migration flows (and 1000-2002)	NO	NO	I ES	NU VFS
met migration nows (avg. 1999-2002)	NU	INO	no	I ĽO

TABLE B1. Relationship between the full ICS and key outcomes

Notes: each coefficient is obtained from a separate regression of the full ICS on each variable. Full ICS refers to the ICS calculated on the entire distribution of surnames. The number of observations equals the number of provinces (103) in all regressions, except those that refer to 1981, when the number of provinces was equal to 95. Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

TABLE B2. Relationship	between	the full	ICS	and	other	economic	outcomes
------------------------	---------	----------	-----	-----	-------	----------	----------

	(1)	(2)	(3)	(4)
Economic activity			(-)	
Protested cheques per 1,000 inhabitants	0.003	0.001	0.001	0.003
	$(0.001)^{**}$	(0.001)	(0.002)	(0.002)
Labour market outcomes				
Unemployment rate	0.005	0.005	0.007	0.008
	$(0.001)^{***}$	$(0.002)^{***}$	$(0.002)^{***}$	$(0.003)^{**}$
Unemployment rate - Males	0.004	0.004	0.006	0.007
Unemployment rate Females	$(0.001)^{***}$	$(0.002)^{***}$	$(0.002)^{***}$	$(0.003)^{**}$
Onemployment rate - remaies	(0.005)	(0.003)	(0.007)	(0.008)
Unemployment rate in the age group 15-24 years	0.005	0.005	0.007	0.004
	$(0.001)^{***}$	$(0.002)^{***}$	$(0.002)^{***}$	(0.003)
Long-term unemployment rate (12 months or more) - Total	0.004	0.003	0.004	0.003
	$(0.001)^{***}$	$(0.001)^{**}$	$(0.001)^{***}$	(0.002)
Employment rate	-0.027	-0.036	-0.041	-0.041
Employment rate - Males	$(0.005)^{+++}$	-0.050	-0.058	$(0.010)^{-1.1}$
Employment rate - mates	$(0.008)^{***}$	$(0.012)^{***}$	$(0.012)^{***}$	(0.023)
Employment rate - Females	-0.015	-0.020	-0.023	-0.034
	$(0.003)^{***}$	$(0.005)^{***}$	$(0.005)^{***}$	$(0.009)^{***}$
Employment rate aged 15-24	-0.009	-0.010	-0.014	-0.011
Employment rate (high school aged 25.64)	$(0.002)^{4444}$	$(0.003)^{0.001}$	$(0.003)^{++++}$	$(0.005)^{4.4}$
Employment rate (figh school aged 20-04)	$(0.007)^{***}$	$(0.011)^{***}$	$(0.011)^{***}$	$(0.020)^{***}$
Employment rate of at least (college graduate aged 25-64)	-0.050	-0.038	-0.069	-0.068
	$(0.013)^{***}$	$(0.019)^{**}$	$(0.023)^{***}$	$(0.029)^{**}$
Participation rate (age 15-64)	-0.034	-0.034	-0.045	-0.057
	$(0.008)^{***}$	$(0.013)^{***}$	$(0.012)^{***}$	$(0.022)^{**}$
Participation rate (age 15-64) - Males	-0.066	-0.040	-0.057	(0.040)
Participation rate (age 15-64) - Females	-0.017	(0.025)	-0.021	(0.044)
rancepation rate (age 10 01) remates	$(0.004)^{***}$	$(0.006)^{***}$	$(0.006)^{***}$	$(0.010)^{***}$
Participation rate (age 15-24)	-0.021	-0.022	-0.029	-0.013
	$(0.004)^{***}$	$(0.005)^{***}$	$(0.005)^{***}$	(0.009)
Trade Openness				
Imports to value added	-0.002	-0.001	-0.002	-0.001
L	$(0.001)^{**}$	(0.001)	(0.001)	(0.002)
Exports to value added	-0.003	-0.003	-0.003	-0.004
	$(0.001)^{***}$	$(0.001)^{***}$	$(0.001)^{***}$	$(0.002)^{***}$
Controls:				
Value added per capita	NO	YES	NO	NO
North/South dummy	NO	NO	YES	NO
Net migration flows (avg. 1999-2002)	NO	NO	NO	YES

Notes: Each coefficient is obtained from a separate regression of the full ICS on each variable. Full ICS refers to the ICS calculated on the entire distribution of surnames. Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

	TABLE B3. Relat	ionship betweer	n the full ICS	and other	socio-politica	al outcomes
--	-----------------	-----------------	----------------	-----------	----------------	-------------

or relationship setween the run res an	(1)	(0)	(9)	(4)
Life expectancy	(1)	(2)	(3)	(4)
Life expectancy at birth, males	-0.101	-0.083	-0.124	(0.182)
Life expectancy at 65, males	(0.077)	(0.074)	-0.029	(0.121) 0.069
· · · · · · · · · · · · · · · ·	(0.027)	(0.026)	(0.027)	(0.042)
Life expectancy at birth, females	-0.367	-0.297	-0.329	-0.080
Life expectancy at 65 females	$(0.085)^{***}$	$(0.091)^{***}$	$(0.087)^{***}$	(0.164)
Life expectancy at 65, females	$(0.027)^{***}$	$(0.030)^{***}$	$(0.029)^{***}$	(0.079)
Crime Rates				
Total crimes	-0.007 $(0.003)^{**}$	-0.005 (0.003)	-0.005 (0.003)	-0.007 (0.005)
Violent crimes	-0.004	-0.004	-0.004	-0.002
Thefts	-0.007	-0.005	-0.006	-0.002
Other crimes	$(0.002)^{***}$ 0.002	$(0.002)^{**}$ 0.002	$(0.002)^{***}$ 0.003	(0.003) -0.013
Murders per 100.000 inhabitants	$(0.003) \\ 0.004$	$(0.003) \\ 0.003$	$(0.003) \\ 0.003$	$(0.005)^{**}$ 0.000
Sleight of hand per 100 000 inhabitants	$(0.001)^{***}$	$(0.001)^{**}$	$(0.001)^{***}$	(0.002)
	$(0.001)^{**}$	(0.001)	(0.001)	(0.001)
Theft with tear per 100,000 inhabitants	(0.000) (0.001)	-0.001 (0.001)	-0.001 (0.001)	(0.002) (0.001)
Burglaries per 100,000 inhabitants	-0.009	-0.008	-0.010	-0.009
Theft of parked cars per 100,000 inhabitants	-0.006	-0.005	-0.006	-0.002
Car thefts per 100,000 inhabitants	$(0.001)^{***}$ 0.000	$(0.002)^{***}$ -0.001	$(0.002)^{***}$ -0.001	$(0.003) \\ 0.000$
Scams per 100 000 inhabitants	(0.001)	(0.001)	(0.001)	(0.002)
	$(0.002)^*$	(0.002)	(0.002)	$(0.004)^{**}$
Smuggling offences per 100,000 inhabitants	$(0.001)^{***}$	$(0.001)^{**}$	$(0.001)^{**}$	(0.001)
Drug production and sale per 100,000 inhabitants	(0.000)	0.001	(0.001)	-0.002
Exploitation of prostitution per 100,000 inhabitants	-0.004	-0.003	-0.004	-0.006
Distraints per 1,000 inhabitants aged 18+	$(0.001)^{***}$ 0.001	$(0.001)^{***}$ 0.001	$(0.001)^{***}$ 0.000	$(0.002)^{***}$ 0.001
Distroints por 1 000 families	(0.002)	(0.002)	(0.002)	(0.002)
Distraints per 1,000 families	(0.001)	(0.002)	(0.002)	(0.002)
Suicides Rates				
Suicides per 100,000 - Total	-0.005 (0.002)**	-0.001 (0.002)	-0.002 (0.002)	-0.006 (0.004)
Suicides per 100,000 population - Males	0.000	0.002	0.002	0.000
Suicidos por 100 000 population Famalos	(0.001)	$(0.001)^*$	$(0.001)^*$	(0.002)
Succes per 100,000 population - remains	(0.001)	(0.001)	(0.001)	(0.001)
Suicide attempts per 100,000 - Total	0.000	0.002	0.002	0.000
Suicida attempta por 100.000 Malas	(0.002)	(0.002)	(0.002)	(0.003)
Suicide attempts per 100,000 - Males	(0.000)	$(0.001)^*$	$(0.001)^*$	(0.001)
Suicide attempts per 100,000 - Females	0.000	0.001	0.001	-0.001
	(0.001)	$(0.001)^*$	(0.001)	(0.001)
Public sector activity Value of public works started (pct VA)	0.002	0.002	0.002	0.004
Value of moleling and a started language in the VA	$(0.001)^{**}$	(0.001)	$(0.001)^{**}$	$(0.002)^{***}$
Value of public works started by provinces (pct VA)	$(0.001)^{**}$	$(0.001)^{*}$	$(0.001)^{*}$	(0.003) $(0.001)^{***}$
Value of public works started (construction sector, pct VA)	(0.002)	0.001	(0.002)	0.006 (0.002)***
Value of public works completed (pct VA)	0.004	0.003	0.004	0.002
Value of public works completed by provinces (pct VA)	0.001	$(0.002)^{*}$ 0.002	0.002	(0.002) 0.004
Percentage politicians with at least secondary education	$(0.001)^{**}$ 0.002	$(0.001)^{**}$ -0.003	$(0.001)^{**}$ 0.000	$(0.001)^{***}$ 0.017
Ratio of paid to committed eveneses	(0.007) 0.012	(0.007) 0.019	(0.007) 0.019	(0.012)
Defit are write in success	(0.024)	(0.023)	(0.024)	(0.038)
Dencit per capita in euros	(0.001)	(0.000)	(0.000) (0.001)	(0.001)
Growth rate of deficit per capita in euros	(0.000) (0.001)	(0.000) (0.001)	$\begin{array}{c} 0.000 \\ (0.001) \end{array}$	(0.000) (0.001)
Controls:		. /	. /	
Value added per capita North /South dummy	NO	YES	NO VES	NO NO
Net migration flows (avg. 1999-2002)	NO	NO	NO	YES

Notes: Each coefficient is obtained from a separate regression of the full ICS on each variable. Full ICS refers to the ICS calculated on the entire distribution of surnames. Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

(c) Other socio-political outcomes

FIGURE B1. Coefficients and p-values from separate regressions of the full ICS on province-level outcomes

	(1)	(2)	(3)	(4)
Economic activity	~ /			
Value added per capita (avg 1999-2004)	-0.016	-0.016	-0.012	-0.011
	$(0.006)^{***}$	$(0.006)^{***}$	(0.009)	$(0.006)^{**}$
Value added (1981)	-0.025	-0.025	-0.038	-0.026
	$(0.007)^{***}$	$(0.007)^{***}$	$(0.013)^{***}$	$(0.009)^{***}$
Inequality				
Standard deviation of log income	0.024	0.032	0.043	0.025
8	$(0.006)^{***}$	$(0.010)^{***}$	$(0.011)^{***}$	$(0.006)^{***}$
	· · ·	· · · ·	· · · ·	()
Schooling (lack of)	0.048	0.025	0.041	0.029
marviauais aged 23-04 with at most 8 years of schooling	(0.048)	(0.033)	(0.041)	(0.032)
Early school dropout (age 18-24)	(0.010) 0.022	0.019	0.020	0.015
Daily school dropout (ago 10 21)	$(0.005)^{***}$	$(0.006)^{***}$	$(0.005)^{***}$	$(0.004)^{***}$
	(0.000)	(0.000)	(0.000)	(0.00-)
Social conital				
Votor turnout (Chamber of Deputies)	0.114	0.111	0.119	0.063
voter turnout (Chamber of Deputies)	(0.030)***	(0.043)**	(0.039)***	(0.003)
Voter turnout (Senate of the Republic)	-0.052	-0.023	-0.030	(0.042) 0.012
(Solute of the Republic)	$(0.025)^{**}$	(0.030)	(0.029)	(0.023)
Voter turnout (European Parliament)	-0.095	-0.089	-0.090	-0.052
	$(0.019)^{***}$	$(0.022)^{***}$	$(0.021)^{***}$	$(0.018)^{***}$
Newspaper sales per capita	`-0.0Ó6	`-0.0Ó3	-0.004	-0.003
	$(0.002)^{**}$	(0.003)	(0.003)	(0.002)
Controls				
Value added per capita	NO	YES	NO	NO
North/South dummy	NŎ	NO	YES	NŎ
Net migration flows (avg. 1999-2002)	NO	NO	NO	YES

TABLE B4. Relationship between the Local ICS-30 and key outcomes

Notes: Each coefficient is obtained from a separate regression of the Local ICS-30 on each variable. Local ICS-30 refers to the ICS calculated including only surnames that contain at most 30 people (see Section 5) and are local (see Section 2.2). The number of observations equals the number of provinces (103) in all regressions, except those that refer to 1981, when the number of provinces was equal to 95. Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

Table B5	5. R	elations	ship	between	the	Local	ICS-30	and	other	economic	outcomes

	(1)	(0)	(2)	(4)
	(1)	(2)	(3)	(4)
Economic activity	0.005	0.000	0.001	0.000
Protested cheques per 1,000 inhabitants	0.005	0.002	0.001	0.003
	$(0.003)^*$	(0.003)	(0.004)	(0.002)
Labour market outcomes				
Unemployment rate	0.009	0.009	0.010	0.008
	$(0.003)^{***}$	$(0.005)^*$	$(0.004)^{**}$	$(0.003)^{**}$
Unemployment rate - Males	0.008	0.009	0.010	0.007
	$(0.002)^{***}$	$(0.004)^{**}$	$(0.004)^{***}$	$(0.003)^{**}$
Unemployment rate - Females	0.009	0.009	0.010	0.008
	$(0.003)^{***}$	$(0.005)^*$	$(0.005)^{**}$	$(0.003)^{**}$
Unemployment rate in the age group 15-24 years	0.007	0.003	0.004	0.004
	$(0.003)^{**}$	(0.004)	(0.004)	(0.003)
Long-term unemployment rate (12 months or more) - Total	0.005	0.003	0.004	0.003
	$(0.002)^{**}$	(0.003)	(0.003)	(0.002)
Employment rate	-0.042	-0.046	-0.050	-0.041
- •	$(0.012)^{***}$	$(0.021)^{**}$	$(0.019)^{**}$	$(0.016)^{***}$
Employment rate - Males	-0.048	`-0.022	`-0.032	-0.024
1 0	$(0.019)^{**}$	(0.031)	(0.029)	(0.023)
Employment rate - Females	-0.029	-0.039	-0.039	-0.034
1 0	$(0.007)^{***}$	$(0.012)^{***}$	$(0.011)^{***}$	$(0.009)^{***}$
Employment rate aged 15-24	-0.014	-0.014	-0.018	-0.011
1 0 0	$(0.004)^{***}$	$(0.007)^{**}$	$(0.007)^{**}$	$(0.005)^{**}$
Employment rate (high school aged 25-64)	-0.069	-0.103	-0.109	-0.084
1, (0, 0,)	$(0.015)^{***}$	$(0.026)^{***}$	$(0.025)^{***}$	$(0.020)^{***}$
Employment rate of at least (college graduate aged 25-64)	-0.085	-0.060	-0.088	-0.068
	$(0.029)^{***}$	(0.043)	(0.054)	$(0.029)^{**}$
Participation rate (age 15-64)	-0.071	-0.086	-0.095	-0.057
	$(0.018)^{***}$	$(0.029)^{***}$	$(0.028)^{***}$	$(0.022)^{**}$
Participation rate (age 15-64) - Males	-0.067	0.017	0.008	0.040
randerpation rate (age 1001) Mares	(0.045)	(0.059)	(0.061)	(0.044)
Participation rate (age 15-64) - Females	-0.040	-0.054	-0.056	-0.038
1 articipation rate (age 10-04) - remates	(0.008)***	(0.012)***	(0.012)***	(0.010)***
Participation rate (ago 15.24)	(0.008)	0.015)	(0.013)	(0.010)
r articipation rate (age 15-24)	-0.025	(0.010)	(0.019)	(0.000)
	(0.009)	(0.013)	(0.014)	(0.009)
Trada Openpeg				
Imports to value added	0.003	0.000	0.001	0.001
Imports to value added	(0.003)	(0.000)	(0.001)	(0.001)
Even outs to value added	(0.002)	(0.002)	(0.002)	(0.002)
Exports to value added	-0.000	-0.003	-0.000	-0.004
	$(0.002)^{-34}$	$(0.002)^{100}$	$(0.002)^{+10}$	$(0.002)^{-0.00}$
Controle				
Value added per capita	NO	VES	NO	NO
North /South dummy	NO	NO	VES	NO
Net migration flows (avg. 1000 2002)	NO	NO	NO	VFS
ince ingration nows (avg. 1999-2002)	NO	NO	INO.	1 120

Notes: Each coefficient is obtained from a separate regression of the Local ICS-30 on each variable. Local ICS-30 refers to the ICS calculated including only surnames that contain at most 30 people (see Section 5) and are local (see Section 2.2). Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

TABLE B6.	Relationship	between	the	Local	ICS-30	and	other	socio-	political	outco	mes
						(1)	(2)		(2)	(4)	

	(1)	(2)	(3)	(4)
Life expectancy Life expectancy at birth, males	-0.014	0.020	-0.060	0.182
Life expectancy at 65, males	(0.176)	(0.171)	(0.173)	(0.121)
	0.007	-0.005	-0.028	0.069
	(0.062)	(0.060)	(0.062)	(0.042)
Life expectancy at birth, females	(0.062)	(0.060)	(0.062)	(0.042)
	-0.453	-0.292	-0.353	-0.080
Life expectancy at 65, females	$(0.205)^{**}$ -0.202 $(0.063)^{***}$	(0.218) -0.157 $(0.072)^{**}$	$(0.209)^{*}$ -0.169 $(0.068)^{**}$	$(0.164) \\ -0.079 \\ (0.055)$
Crime Rates Total crimes	-0.005	0.001	0.001	-0.007
Violent crimes	(0.007)	(0.007)	(0.007)	(0.005)
	0.003	0.003	0.003	-0.002
Thefts	(0.007)	(0.007)	(0.007)	(0.005)
	-0.002	0.004	0.003	-0.002
Other crimes	(0.005)	(0.005)	(0.005)	(0.003)
	-0.006	-0.007	-0.005	-0.013
Murders per 100,000 inhabitants	(0.007)	(0.007)	(0.007)	$(0.005)^{**}$
	0.005	0.002	0.003	0.000
Sleight of hand per 100,000 inhabitants	$(0.002)^*$	(0.002)	(0.002)	(0.002)
	-0.002	0.001	0.000	-0.002
Theft with tear per 100,000 inhabitants	(0.002)	(0.002)	(0.002)	(0.001)
	0.004	0.004	0.004	0.002
Burglaries per 100,000 inhabitants	(0.002)**	(0.002)**	(0.002)**	(0.001)
	-0.015	-0.012	-0.014	-0.009
Theft of parked cars per 100,000 inhabitants	$(0.004)^{***}$	$(0.005)^{**}$	$(0.006)^{**}$	$(0.004)^{**}$
	-0.006	0.000	-0.001	-0.002
Car thefts per 100,000 inhabitants	(0.004)	(0.004)	(0.004)	(0.003)
	0.006	0.004	0.004	0.000
Scams per 100,000 inhabitants	(0.002)**	$(0.002)^{*}$	(0.002)*	(0.002)
	-0.010	-0.007	-0.008	-0.007
Smuggling offences per 100,000 inhabitants	$(0.005)^{*}$	(0.005)	(0.005)	$(0.004)^{**}$
	0.003	0.003	0.003	0.001
Drug production and sale per 100,000 inhabitants	(0.001)***	0.000	$(0.001)^{***}$ 0.000	(0.001) -0.002
Exploitation of prostitution per 100,000 inhabitants	(0.004)	(0.004)	(0.004)	(0.003)
	-0.010	-0.009	-0.009	-0.006
Distraints per 1,000 inhabitants aged $18+$	$(0.003)^{***}$	$(0.003)^{***}$	$(0.003)^{***}$	$(0.002)^{***}$
	0.000	-0.001	-0.001	0.001
Distraints per 1,000 families	(0.004) 0.002 (0.004)	$(0.004) \\ 0.000 \\ (0.004)$	$(0.004) \\ -0.001 \\ (0.004)$	(0.002) 0.002 (0.002)
Suicides Rates Suicides per 100,000 - Total	-0.014	-0.011	-0.012	-0.006
Suicides per 100,000 population - Males	$(0.004)^{***}$	$(0.005)^{**}$	$(0.005)^{**}$	(0.004)
	-0.004	-0.002	-0.002	0.000
Suicides per 100,000 population - Females	$(0.002)^{*}$	(0.002)	(0.002)	(0.002)
	-0.004	-0.002	-0.002	-0.001
Suicide attempts per 100,000 - Total	(0.003)	(0.003)	(0.003)	(0.002)
	-0.006	-0.002	-0.002	0.000
Suicide attempts per 100,000 - Males	$(0.003)^{*}$	(0.004)	(0.004)	(0.003)
	-0.003	-0.001	0.000	-0.001
Suicide attempts per 100,000 - Females	$(0.002) -0.002 \\ (0.002)$	$(0.003) \\ -0.001 \\ (0.002)$	$(0.003) \\ -0.001 \\ (0.002)$	(0.002) -0.001 (0.001)
Public sector activity Value of public works started (pct VA)	0.005	0.004	0.005	0.004
Value of public works started by provinces (pct VA)	0.002)*	0.002)	$(0.002)^{**}$ 0.005 $(0.002)^{***}$	$(0.002)^{***}$ 0.003 (0.001)***
Value of public works started (construction sector, pct VA) $$	$(0.002)^{***}$ 0.010 $(0.002)^{***}$	$(0.002)^{***}$	$(0.002)^{+++}$ 0.010 $(0.002)^{***}$	$(0.001)^{***}$ 0.006 (0.002)***
Value of public works completed (pct VA)	(0.003)	0.002	0.004	0.002
Value of public works completed by provinces (pct VA)	(0.003)	(0.004)	(0.003)	(0.002)
	0.007	0.006	0.006	0.004
Percentage politicians with at least secondary education	$(0.002)^{***}$	$(0.002)^{***}$	$(0.002)^{***}$	$(0.001)^{***}$
	0.013	0.004	0.007	0.017
Ratio of paid to committed expenses	(0.017)	(0.017)	(0.017)	(0.012)
	0.020	0.033	0.035	-0.003
Deficit per capita in euros	(0.055) 0.003 (0.002)	(0.054) 0.004	(0.054) 0.004	(0.038) 0.001 (0.002)
Growth rate of deficit per capita in euros	(0.002)	(0.002)	(0.002)	(0.002)
	0.001	0.001	0.001	0.000
	(0.001)	(0.002)	(0.001)	(0.001)
Controls: Value added per capita North/South dummy Net migration flows (avg. 1999-2002)	NO NO NO	YES NO NO	NO YES NO	NO NO YES

Notes: Each coefficient is obtained from a separate regression of the Local ICS-30 on each variable. Local ICS-30 refers to the ICS calculated including only surnames that contain at most 30 people (see Section 5) and are local (see Section 2.2). Standard errors in parentheses. (***) indicates significance at the 1% level, (**) indicates significance at the 5% level and (*) indicates significance at the 10% level.

.5 p-value

(c) Other socio-political outcomes

FIGURE B2. Coefficients and *p*-values from separate regressions of the Local ICS-30 on province-level

Public sector

.6

Suicide

7

1

8.9

Life expectancy

Ó

outcomes

.1 .2 .3 .4

× Crime

48

C Appendix: robustness checks using alternative sample selection criteria

This appendix provides results using the same ICS as in the body of the paper, namely the ICS-30 calculated on the sample of individuals whose surname contains no more than 30 people, but making different choices as to the selection of the sample. Specifically, we include both males and females and, alternatively, exclude the self-employed. Our results carry over to these alternative samples. Table C1 shows that the correlation between the ICS calculated on the different samples is very high. More specifically, Figure C1 shows the unconditional results including females and Figure C2 the unconditional results excluding self-employed workers who are more likely to under-report. Results are very close to those presented in Section 6. Results controlling for value added per capita, a North/South dummy and net migration flows are also similar to those presented in the body of the paper and are available upon request.

TABLE C1. Pairwise correlations across ICS measures							
	ICS-30 males	ICS-30 males and females	ICS-30 no self-employed				
ICS-30 males ICS-30 males and females ICS-30 no self-employed	$\begin{array}{c} 1.0000 \\ 0.9174 \\ 0.8251 \end{array}$	$1.0000 \\ 0.8019$	1.0000				

Notes: ICS-30 refers to the ICS calculated including only surnames that contain at most 30 people. Source: 2005 Italian tax records.

FIGURE C1. Coefficients and p-values from separate regressions of the ICS-30 computed including females on province-level outcomes

FIGURE C2. Coefficients and p-values from separate regressions of the ICS-30 computed excluding self-employed workers on province-level outcomes