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Abstract

This paper provides a rigorous analysis of the sources of changes in the U.S. skill premium
between 1965-1999. Over this period, the relative wages of skilled workers have increased signif-
icantly despite the substantial growth in their relative supply. I present new empirical estimates
of the impact of technology and various measures of capital in the demand for skilled labor,
based on a translog production model with four (and Þve) factors and separate trends for the
factor biases of technical change. I Þnd that capital-skill complementarity accounts for at most
40 percent of the rise in the skill premium, with factor nonneutral technological change and other
unobservable factors accounting for most of the variation in the skill premium. Furthermore,
the contribution of capital is decreasing over time while the technology effect is accelerating. I
show that only a small fraction of equipment capital, information technology, is complementary
to skilled labor. In fact, equipment excluding IT has narrowed the skilled wage gap. I also
Þnd that skill-biased technological change takes the form of rising skilled labor efficiency and
declining unskilled labor efficiency, with the latter becoming increasingly important over time.
In addition, IT-using innovations are found to drive the skill premium down, which suggests that
the total effect of IT is smaller than the one predicted by changing quantities alone. Finally, I
Þnd that the data reject less ßexible speciÞcations in favor of the translog model.
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1 Introduction

Over the past 35 years, the share of workers with college education has nearly tripled in the

U.S. Despite this strong upward trend in the relative supply of more-educated workers, there has

been a substantial increase in the college/high school wage differential. These changes provide

evidence of considerable shifts in the relative demand for more-educated workers. This paper

develops a framework to analyze the sources of variation in the relative demand for skilled labor

and applies it to time series data from the U.S. over the period 1965-1999. SpeciÞcally, I present

new empirical estimates of the impact of factor nonneutral technological change and different types

of capital on the rise in the skill premium, deÞned as the relative wage of skilled to unskilled

labor. The framework I develop allows me to disentangle and separately quantify the effects of

skill-biased technical change and capital-skill complementarity, as driving forces behind increased

wage inequality. Although these two forces, to be formally deÞned later, have not explicitly been

distinguished in previously literature, their different nature and evolution over time prove that the

distinction is important.

Katz and Murphy (1992) propose a simple demand and supply framework to understand changes

in the wage structure. They Þnd that ßuctuations in the growth of the relative supply of college

workers combined with steady demand growth for these workers do fairly well in capturing observed

movements in the skill premium over the period 1963-1987. A regression of the log of the college

wage premium on the log quantity of college to high school graduates and a time trend delivers

an R-squared of about 50 percent and implies an annual growth rate in the demand for skilled

labor of 3.3 percent1. The quantiÞcation of the sources behind the increased demand for skill labor

is beyond the scope of their paper. However, the authors associate this trend with nonneutral

technological change, changes in prices of nonlabor input or steady shifts in industrial composition.

In the literature, rapid growth in the demand for skilled labor is usually linked to the computer

revolution, the new economy, and the diffusion of new technologies, which are likely to favor skilled

workers and to displace less educated workers. Along these lines, the existence of a computer

wage premium, as well as positive cross-industry correlations of capital intensity and indicators of

new technologies with worker skills, provide evidence of both skill-biased technological change and

capital-skill complementarity2.

Revival of this literature at the macro level is due to Krusell et al (2000), who Þnd that with

1Bound and Johnson (1992) also report the importance of a trend component. They conclude that observable

variables can account for a very small fraction of the increased wage inequality, and that much of the variation in

the skill premium is attributed to a residual trend -skill-biased technological change- that has shifted the demand for

skilled labor.
2Krueger (1993), Berman et al (1994), Doms et al (1997), Autor et al (1998). For theoretical analysis of the skill-

biased technological change hypothesis see Greenwood and Yorukoglu (1997), Galor and Tsiddon (1997), Acemoglu

(1998), and Caselli (1999).
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capital-skill complementarity3, changes in observed inputs alone can account for most of the his-

torical variation in the skill premium. According to the authors, the positive time trend in Katz

and Murphy is capturing a large increase in the stock of equipment, which is complementary to

skilled labor.

A simple regression analysis encompasses these two views and raises new interesting questions.

Table 1 presents estimates of OLS regressions of the log of the college wage premium on a time

trend and various measures of capital4. It is worth describing these results since they constitute the

main motivation of this paper. Column 1 displays estimates of the Katz and Murphy speciÞcation

applied to my data between 1965 and 1999. The estimates are consistent with the ones found by the

authors, and suggest that the relative demand for college workers has been growing at an annual

rate of 2 percent. The Þt of this regression is considerably higher given the longer time period -the

adjusted R-squared is 0.85 compared to 0.52 in Katz and Murphy. Column 2 shows a regression

that replaces the time trend with the log ratio of equipment capital. Besides being signiÞcant and

suggesting capital-skill complementarity effects, this term can account for a similar fraction of the

variance in the skill premium as the time trend in Katz and Murphy. This result is hardly surprising

given the high correlation between capital and a time trend. However, this effect disappears -it

actually changes sign5- as soon as equipment and the time trend are entered simultaneously in the

regression. Contrary to the Þnding by Krusell et al, this result suggests that the time trend in the

Katz and Murphy model is not serving as a proxy for omitted capital-skill complementarity effects.

The negative coefficient on equipment casts doubt on the hypothesis that links the increase in

equipment capital to the rise in the skilled wage gap. It also motivates the Þrst question this paper

addresses: what fraction of the increased skill premium is accounted for by changes in capital, and

what fraction is accounted for by technical change and other unobserved factors, proxied by a time

trend in the regression? In other words, is it latent skill-biased technological change or capital-skill

complementarity, or a combination of both, that has increased the skill premium?

A second set of questions arises when one analyzes the various components of capital in detail.

The distinct evolution of a small subset of the stock of equipment, information technology (IT), with

respect to the rest of equipment suggests the possibility of differentiating these two components in

the regression analysis. On average, IT makes up for 17 percent of the total value of equipment6.

The stock of IT has been growing at about Þve times the rate of equipment non IT over the period

1965-1999. Furthermore, the price of IT has decreased at an average rate of 3.6 percent per year,

while the price of equipment non IT increased about 4 percent per year (see Figures 2.1-2.4).

With IT equipment, as opposed to total equipment, the implications of the simple regression

3The concept of capital-skill complementarity is formalized by Griliches (1969) in terms of Allens elasticities of

substitution (Allen, 1938). Complementarity exists when increasing the amount of one factor raises the marginal

beneÞt of another factor. This would suggest that complementary factors will tend to be used together in production.
4Table 2 contains OLS regressions, using prices of capital instead of quantities. The implications are similar.
5The negative coefficient on equipment capital is not statistically signiÞcant at 10 percent signiÞcant level.
6The share of IT in total equipment has grown from less than 9 percent in 1965 to 25 percent in 1999.
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exercise change completely (see columns 4 and 5 of Table 1). In this case, the coefficient on IT

is robust (positive and signiÞcant) to the inclusion of a time trend and the time trend is not

signiÞcantly different from zero. IT-skill complementarity can account for most of the variation in

the skill premium, with or without technical change (i.e. the time trend) in the model. In contrast,

the regression with equipment excluding IT (EQnonIT) shows a positive and signiÞcant time trend

and a negative relationship between the relative earnings of college workers and this measure of

equipment, implying substitutability between the two inputs.

Columns 10 and 11 in Table 1 reinforce this Þnding. When IT and EQnonIT enter simultane-

ously in the regression, IT is found to drive the college premium up, whereas EQnonIT is found to

have a negative and signiÞcant impact on the wages of more-educated workers. In addition, the fact

that the time trend remains statistically signiÞcant when included along with these two measures

of equipment suggests a potential separate role for biased technology and for each type of capital.

To summarize, a simple regression exercise shows that Katz and Murphy�s time trend is not

explained by equipment-skill complementarity, as argued by Krusell et al. In fact, the growth of the

largest component of equipment has tended to narrow the skilled wage gap. However, a small but

growing subset of the stock of equipment, IT capital, does show a close association with changes in

the relative wages of skilled labor.

The questions this paper addresses are motivated by the regression results presented above.

These results call for: Þrst, a more rigorous analysis of the capital-skill complementarity hypothesis

versus the skilled-biased technological change explanation of the increase in the skilled-wage gap. I

set about trying to quantify what observable variables (measures of capital), as opposed to technical

change and other unobservable factors, can explain about the rise in the skill premium. The second

objective of this paper is to analyze the pattern of substitution among factors of production in

order to identify which type of capital is complementary to skilled labor and can therefore be held

responsible for the rise in inequality. The evidence presented above reveals how differently the

two components of equipment interact with skilled labor input in production, and reinforces the

need to treat them as differentiated factors. This paper constitutes the Þrst attempt to examine

substitutability/complementarity between IT and labor inputs. Finally, an explanation based on

skill-biased technological change requires a deÞnition and measurement of the factor biases of

technical change, which is accomplished in this paper in a rather innovative way.

I develop a framework to disentangle the effects of skill-biased technological change and capital-

skill complementarity and apply it to time series data from the U.S. over the period 1965-1999.

Capital-skill complementarity is deÞned as in Griliches (1969). For comparative purposes, I some-

times use an alternative deÞnition, by which there is X-skill complementarity if increases in type X

capital -triggered by the decline of its price- induce a higher demand for skilled labor and raise the

skill premium. Similarly, to the extent that technology increases the demand for skilled labor and

their relative wage, I claim there is skill-biased technological change. This deÞnition of skill-biased
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technological change is broad in that not only changes in the efficiency of skilled and unskilled

workers may induce a response in the relative demand and price of skilled labor. Improvements

in the technologies associated with capital inputs have also the potential to inßuence labor inputs

and their prices.

To provide a complete model of the changes in the wage structure, I estimate a translog pro-

duction function with four (and Þve) inputs and separate trends for the factor biases of technical

change. I distinguish between two types of labor -skilled and unskilled workers- and two (or) three

types of capital7. The estimated parameters of this model give a complete description of the pattern

of substitution among inputs and of the nature of technical change. An important feature of this

framework is that technology is allowed to enter in a non-neutral way. Hence, technical change

might affect the absolute efficiency of the various inputs differently over time. This constitutes an

improvement upon other models, which are only able to provide results regarding input technologies

in relative terms.

The choice of the production function framework is crucial. More widely used production

functions, such as CES and Cobb Douglas, are not appropriate for the research questions this paper

addresses. These speciÞcations are constrained in three signiÞcant ways: First, the elasticities of

substitution must be the same between all inputs8, which rules out a priori the hypothesis I test

in this paper, mainly that skilled labor is more complementarity to capital than unskilled labor.

Second, the elasticities of substitution are bounded to be positive to maintain the quasi-concavity

of the production function. In other words, all inputs are assumed to be substitutes, which excludes

absolute complementarity. Finally, the elasticities are constant over time. The translog speciÞcation

overcomes all these limitations9. Translog elasticities of substitution vary over time, which helps to

understand the historical variation of the skill premium. Both substitutability and complementarity

between inputs are allowed. All elasticities describing the patterns of substitution among the factors

are parameters to be estimated in the structural model and are therefore not constrained to be the

same, which allows for tests of capital-skill complementarity.

In addition, this framework separately identiÞes the impact of each individual factor of pro-

duction and each of the input biases of technical change on the growth of the skill premium. By

aggregating these contributions, the growth of the skill premium is expressed as a function of four

components. First, the relative supply effect, which involves the growth of the supplies of skilled

and unskilled labor. Second, the complementarity effect, which, depends on the growth of IT cap-

ital relative to that of non IT capital. Third, a technology component involving the skilled and

unskilled labor biases of technical change, which I call the relative skilled labor technology effect.

7 In the four input model, I distinguish between IT capital and the rest of capital. In the Þve input model I

distinguih between IT, equipment non IT, and structures capital.
8 In the Cobb-Douglas case, all the elasticities of substitution among inputs are equal to one. Uzawa (1962) and

MacFadden (1963) have shown that elasticities of substitution among all inputs must be the same in a CES function.
9See Christensen, Jorgenson and Lau (1971, 1973)
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And Þnally, the relative IT capital technology effect that depends of the biases of the two types

of capital. In the Þve input model, the quantities and the biases of technical change of three -as

opposed to two- differentiated capital factors (IT, equipment non IT, and structures) contribute to

the growth of the skill premium.

The results of this study show that:

� Capital-skill complementarity can account for at most 40 percent of the increase in the skill
premium, with factor noneutral technological change and other unobservable factors account-

ing for most of the rise in the premium. Changes in the wage structure cannot therefore be

explained by changes in observed inputs alone.

� Capital-skill complementarity takes the form of IT-skill complementarity and, to a lesser ex-

tent, structures-skill complementarity. On the other hand, growth in equipment excluding IT

has narrowed the skilled-wage gap. The reason being that the two components of equipment

have behaved very differently over this period, combined with the fact that they interact with

skilled labor and unskilled labor in different ways in the production function.

� Skilled-biased technological change takes the form of declining unskilled labor efficiency and

rising efficiency of skilled labor. Since 1980, innovations biased in an unskilled labor saving

direction have become increasingly important.

� IT-biased technological change has narrowed the skilled wage gap, counteracting the IT-skill
complementarity effect. Therefore, the overall contribution of IT capital to the growth in the

skill premium is smaller than the one predicted by changing physical quantities alone.

� The contribution of IT capital-skill complementarity to the growth in the skill premium has

decreased since 1980 because IT is found to be less and less complementary to skilled labor

over time. On the other hand, I Þnd evidence of acceleration in the pace of skill-biased

technological change.

� Finally, I perform separability tests and Þnd that the data reject less ßexible speciÞcation in

favor of the translog approach to modelling aggregate production.

The rest of the paper is outlined as follows. In section 2, I present the production function

framework within which wage inequality is analyzed. In Section 3, I provide a description of the

data used in the quantitative analysis and empirical trends of these data. Results follow in Section

4, and I conclude in Section 5.
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2 Capital-Skill Complementarity and Skill-Biased Technological
Change in a Multi-Input Production Function Framework

The analysis of wage inequality at the aggregate level is usually addressed within a production

function framework. In this section I review the aggregate production functions used in previous

related literature and highlight their limitations to address the questions this paper aims at evalu-

ating. I then outline the translog production possibility frontier approach to modelling aggregate

output and discuss the suitability of this framework. Capital-skill complementarity and skill-biased

technological change are next deÞned in terms of the parameters of the translog model.

2.1 Analysis of Wage Inequality in a Production Function Framework

Using aggregate data between 1963 and 1987, Katz and Murphy estimate a supply and demand

model specifying the log of the skill premium as a function of a linear trend and the log of the

relative supply of skilled workers and Þnd

ln
ps
pu
= c− 0.71 ln Ls

Lu
+ 0.033 t (1)

where ps
pu
is the college wage premium, LsLu is the relative supply of college equivalent workers,

and t is a time trend. This implies that the labor market in the period 63-87 is characterized by an

elasticity of substitution between skilled workers and unskilled workers of about σ = 1
0.71 ≈ 1.4, and

an annual growth rate in the demand for skills of 3.3 percent. Their results indicate that observed

ßuctuations in the rate of growth of the relative supply of college graduates combined with smooth

trend demand growth in favor of more-educated workers can largely explain ßuctuations in the

college/high schools differential over the period.

Acemoglu (2000) Þts Katz and Murphy�s analysis into a model of production, and derives their

speciÞcation from the Þrst order conditions of a proÞt maximizing economy with the following

production function

Y = [(AuLu)
ρ + (AsLs)

ρ]1/ρ (2)

where Au and As are labor augmenting factors reßecting the impacts of technical change. The

skill bias of the technical change is determined by the relative growth rates in As and Au.

Combining Þrst order conditions he obtains

ln
ps
pu

=
σ − 1
σ

ln
As
Au

− 1

σ
ln
Ls
Lu

σ =
1

1− ρ (3)

ln
As
Au

= γ0 + γ1t
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Therefore, one could interpret the time trend in the Katz and Murphy model as the relative

efficiency of skilled labor to unskilled labor. This model is fairly restrictive because it excludes cap-

ital as a factor of production and thus ignores capital-skill complementarity as a source of changes

in the skill premium. Even though capital-skill complementarity might be implicitly contained in

the demand shifter term, represented by a time trend in Katz and Murphy, the model does not

account for this effect in an explicit way, and its impact cannot be distinguished from the effect of

other demand factors, such as latent skill-biased technological change.

Krusell et al discusses the extent to which the trend term in the Katz and Murphy model may

be serving as a proxy for omitted capital-skill complementarity effects. In order to allow for these

effects, they estimate a four-factor production function with two types of capital (equipment and

structures) and two types of labor (skilled and unskilled). They assume the production function

is Cobb-Douglas over capital structures, Ks, and a CES function of the three remaining inputs,

Ke, Lu, Ls (equipment capital, unskilled and skilled labor).

Y = Kα
s

h
µLσu + (1− µ) (λKρ

e + (1− λ)Lρs)σ/ρ
i 1−α

σ (4)

where µ and λ are parameters that govern income shares, and σ, ρ govern the substitution

elasticities.

According to the authors, the elasticity of substitution between equipment (or skilled labor)

and unskilled labor is 1
1−σ and the elasticity between equipment and skilled labor is

1
1−ρ . Capital

equipment-skill complementarity requires therefore that σ > ρ, -i.e. the elasticity of substitution

between unskilled labor and equipment is higher than the elasticity of substitution between skilled

labor and equipment- so that an increase in the capital stock increases the marginal product of

skilled labor more than the marginal product of unskilled labor, increasing thus the skill premium.

However, neither the above nesting of Ke, Lu, Ls is CES in general nor the expressions found

by the authors correspond to the elasticities of substitution10. The Allen elasticity of substitution

(Allen, 1938) between unskilled labor and skilled labor and that between unskilled labor and equip-

ment are indeed constant and equal to 1
1−σ . However, the Allen elasticity of substitution between

skilled labor and equipment is 1
1−σ +

Y
psLs+peKe

h
1
1−ρ − 1

1−σ
i
, where ps is the skilled wage and pe

is the rental price of equipment capital. This elasticity is not constant unless σ = ρ. But this

case is not interesting, since it does not allow for capital-skill complementarity effects. Adopting

another deÞnition of the elasticity of substitution11, the direct elasticity of substitution, Krusell et

al� speciÞcation does not deliver constant elasticities for all inputs either.
10 I am grateful to Francesco Caselli for pointing this out to me.
11There are different schools of thought on the appropriate measure for the elasticity of substitution between two

inputs in the context of a multiple-input function. The simplest measure is the direct elasticity of substitution, which

assumes that the other factors quantities in the production function are Þxed and thus can be ignored. The most

popular measure of the elasticity of substitution in general application is perhaps the Allen elasticity of substitution

(also known as the partial elasticity of substitution). This measure does not have a straightforward interpretation,

except in its relation to the input demand elasticities. However, capita-skill complementarity can be formalized in
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As mentioned in the introduction, a CES speciÞcation would not serve the purpose of testing for

capital-skill complementarity. Uzawa (1962) and McFadden (1963) show that in a CES production

function with more than two inputs, the elasticities of substitution among all inputs must be

essentially the same.

Because elasticities of substitution are not constant, the statement that σ > ρ implies capital-

skill complementarity is not strictly correct. However, under an alternative deÞnition in which there

is capital-skill complementarity if the skill premium increases when the capital stock increases, then

the statement is appropriate.

The authors Þnd that σ > ρ and that observable variables alone can account for most of the

variance of the skill premium over the past thirty years, implying that the time trend in Katz and

Murphy is capturing these capital-skill complementarity effects. However, the simple regression

exercise I described in the introduction showed that the time trend in Katz and Murphy is not

explained by equipment-skill complementarity. This result motivates the development of a new

framework that enables to account for -and disentangle- both capital-skill complementarity effects

and skill-biased technological change in order to shed new light on the sources of changes in the

skill premium.

On top of the debate that relates capital-skill complementarity to observable variables (measures

of capital) and skill-biased technological change to unobservables, which provides an empirical

reason to distinguish these two concepts, there is also a theoretical reason to do so. From a

production theory viewpoint, capital-skill complementarity refers to the shape (curvature) of the

isoquants and to the ease with which some inputs can be substituted for others in production. On

the other hand, skill-biased technological change provides information about non-parallel shifts of

the isoquants, hence about the way technology affects the relative efficiency of the inputs. These

two concepts must, consequently, be distinguished both for theoretical and empirical reasons. In

addition, this differentiation has implications for policy and economic growth.

The representation of production used in this paper, which allows to separately identify these

two effects, is given by the translog production function. In the translog approach all elasticities

are parameters to be estimated, which provides a more complete description of the pattern of

substitution among factors. With four inputs, for instance, there are a total of six elasticities to be

estimated (excluding the own-price elasticities). The translog production function allows for both

substitutability and complementarity between inputs. In addition, translog substitution elasticities

vary over time, which helps to understand the historical variation of the skill premium. In addition,

the translog speciÞcation I employ incorporates separate trends for the factor biases of technical

change. From them, the nature of technical change is determined and the hypothesis of skill-biased

terms of Allen elasticities of substitution in a way consistent with Hicks� original idea of factor substitution (Griliches,

1969). A third measure is the Morishima elasticity of substitution. Blackorby and Rusell (1989) argue this is the most

sensible generalization of the Hicks elasticity of substitution. Thompson (1997) introduces the bilateral elasticity and

shows that its performance in applications is better than the Morishima elasticity.
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technological change tested.

2.2 The Translog Production Function

The translog production function can be envisaged as a second-order Taylor�s series approximation

in logarithms to an arbitrary production function (Christensen Jorgenson, Lau, 1971,1973). In this

study I opt for the dual representation of aggregate production under constant returns to scale,

which is a price function, giving the logarithm of the price of output as a quadratic function of the

logarithms of the input prices and the level of technology12

lnP = α0 +α
0
p lnp+ αtt+

1

2
ln p0Bpp ln p+ ln p0βpt t+

1

2
βtt t

2 (5)

where P is the price of output, p is a vector of input prices, and t is the level of technology13. The

matrix Bpp provides a description of the nature of substitution among inputs and is used to evaluate

and quantify the capital-skill complementarity hypothesis. The vector βpt characterizes the nature

of technical change and is used to analyze the skill-biased technological change hypothesis.

To generate an econometric model of production that allows me to estimate the parameters of

interest, the price function is differentiated with respect to input prices and equilibrium conditions

under competitive markets are applied. A system of simultaneous equations is obtained, determin-

ing the value shares as functions of the input prices and technology, which is estimated jointly with

the price function14

v =
∂ lnP

∂ lnp
= αp +Bpp ln p+ βpt t (6)

where v is the vector of input shares.

The parameters estimated from these equations are deÞned as follows:

� Share Elasticities: give the response of the value shares of all inputs to proportional changes
in the input prices. If a share elasticity is positive (negative), the corresponding value share

increases (decreases) with the input price. If I specialize to the case of one output and four

inputs (say, skilled labor,s; unskilled labor, u; IT capital, i; and non IT capital, n) the share

12The dual formulation of production theory under constant returns to scale is due to Samuelson (1954).
13Technology is modeled as a time trend in this framework. Work in progress analyzes alternative representations

of technology.
14One could estimate the translog cost function directly, but gains in efficiency can be realized by estimating the

value shares too.
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elasticities are given by

Bpp =
∂v

∂ lnp
=
∂2 lnP

∂ lnp2
=


βss βsu βsi βsn
βus βuu βui βun
βis βiu βii βin
βns βnu βni βnn

 (7)

� Allen partial elasticities of substitution:

σjk =
βjk + vjvk

vjvk
j, k = s, u, i, n, but j 6= k

σjj =
βjj + v

2
j − vj
v2j

j = s, u, i, n (8)

Positive σjk�s indicate that factor inputs j and k are substitutes, negative that factors are

complements. These elasticities are not constrained to be constant but may vary with the

value shares. Allen elasticities of substitution are often criticized for adding no information

to that contained in the related (constant-output) price elasticities of demand for factors of

production, expressed as

εjk =
∂ ln qj
∂ ln pk

=
pk
qj

∂qj
∂pk

= vkσjk

However, capital-skill complementarity can be formalized in terms of Allen elasticities in a

way that is consistent with Hicks factor substitution. Griliches (1969) shows that for the

capital-skill complementarity hypothesis not to be rejected, the estimated Allen elasticity

between skilled labor and capital must be greater than that between unskilled labor and

capital15.

� Biases of technical change: are obtained by differentiating the logarithm of the price

function twice with respect to the logarithm of input prices and the level of technology

βpt =
∂v

∂t
=
∂2 lnP

∂ lnp∂t
=


βst
βut
βit
βnt

 (9)

15A necessary condition for IT capital-skill complementarity is that

∂ ln
³
Ls
Lu

´
∂ ln

³
pi
ps

´ = εsi − εui = vi(σsi − σui) < 0

That is, σsi − σui < 0.
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If a bias of technical change is positive (negative), the corresponding value share increases

(decreases) with a change in the level of technology and technical change is said to be input-

using (input-saving). The effects of each of the input technologies on the evolution of the

skill premium will be speciÞed as functions of these biases of technical change. The extent of

skill-biased technological change is also quantiÞed from these parameters.

The economic theory of production implies restrictions on all these parameters. A detailed

explanation of these restrictions can be found in the Appendix II, as well as how I deal with the

concavity constraints in the estimation of the econometric model.

2.3 Decomposition of the Growth in the Skill Premium

The estimated parameters are next used to derive the growth rate of the skill premium predicted by

the model, and the contribution of each factor and nonneutral technological change to this growth.

A straightforward application of Shepherd�s lemma allows for a decomposition of the growth of the

skill premium into four main components16:

1. Relative supply effect: describes the impact of the growth in the supplies of skilled and
unskilled workers on the growth of the skill premium.

2. Complementarity effect: depends on the growth rate of the stock of IT relative to that of
non-IT and on the way these two types of capital interact with skilled and unskilled labor in

production.

3. Relative skilled labor technology effect: involves the efficiency parameters of the two
types of labor.

4. Relative IT capital technology effect: involves the two capital biases of technical change.

By Shepherd�s lemma

q =
∂(P ∗Q)
∂p

=
∂P

∂p
Q+

∂Q

∂p
P =

∂ lnP

∂ lnp

P

p
Q = v

PQ

p
(10)

where q is the vector of input quantities, p is the vector of input prices, v is the vector of input

shares, P is the price of output, and Q is the quantity of output. Therefore, the skill premium is

expressed as

ps
pu
=
vs
vu

qu
qs

(11)

16Appendix IV describes how the estimated parameters are used to decompose the growth of the relative share of

skilled to unskilled labo into different components.
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Taking logarithms to p = vPQ
q and differentiating with respect to time, I obtain

gp = gv − gq + gPQ (12)

where gx denotes the growth rate of vector x.

The Þrst term of the above expression can be written as

gv =
∂ ln

¡
αp +Bpp ln p+ βpt t

¢
∂t

= Λ
¡
Bppgp + βpt

¢
(13)

where Λ is a diagonal matrix whose (j, j) element is 1
vj
.

I can then rewrite gp as17

gp = (ΛBpp − I)−1
¡
gq − Λβpt − gPQ

¢
(14)

If gp = (gps , gpu , gpi , gpn) is the vector of growth rates of input prices for skilled labor, unskilled

labor, IT capital, and non-IT capital, I can express the growth of the skill premium, (gps − gpu) as
a function of four components

gps − gpu = (φ1gqs + φ2gqu) + (φ3gqi + φ4gqn) + (ψ1βst + ψ2βut) + (ψ3βit + ψ4βnt) (15)

where φk is the element (1, k) minus the element (2, k) in matrix (ΛBpp − I)−1 , and ψk is the
element (1, k) minus the element (2, k) in matrix − (ΛBpp − I)−1 Λ , for k = 1, 2, ..4. Note that the
above expression is for any given time period. Thus, φk and ψk vary over time, and can be either

positive or negative18.

The Þrst component, (φ1gqs + φ2gqu) , affects the growth rate of the skill premium through the

growth in the supplies of skilled and unskilled labor. This is the relative supply effect. Production

theory requires own price elasticities must be negative. Therefore, at any given time period, φ1 is

expected to be negative and φ2 is expected to be positive. Given the strong upward trend in the

relative abundance of skilled workers relative to unskilled workers, I expect the entire term to affect

negatively the growth of the skill premium.

The second component, (φ3gqi + φ4gqn) , the complementarity effect, depends on the growth of

IT capital relative to that of non-IT capital and on the nature of substitution between the two

types of capital and the two types of labor. The sign of φ3 depends, essentially, on two substitution

elasticities: that between skilled labor and IT, and that between unskilled labor and IT. Suppose,

as I actually Þnd, that IT and skilled labor are complements, while IT and unskilled labor are

substitutes. Then φ3 would be positive, since increases in IT generate a higher demand for skilled

labor and a lower demand for unskilled labor, which would drive the skill premium up.

17Alternatively: gp = (Bpp − V )−1 ¡V (gq − gPQ)− βpt
¢

where V is a diagonal matrix whose (j, j) element is vj
18Also note that ψk = − 1

vk
φk.
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The third term in equation 15, (ψ1βst + ψ2βut) , is the relative skill technology effect. Essentially,

a positive skilled labor bias of technical change and a negative unskilled labor bias lead to increases

in the skilled wage gap. The last term, the relative IT technology effect, (ψ3βit + ψ4βnt) , depends

on the capital biases of technical change, as well as on the patterns of substitution. I sometimes

summarize these two last terms in a single technology effect.

3 Data and Empirical Trends

The objective of this section is to describe the data used in this study and to illustrate the major

trends since 1965. The data consist of annual U.S. time series of capital and labor between 1965

and 1999.

I distinguish between two types of labor: skilled and unskilled. I deÞne skilled labor as those

workers with at least college degree (minimum 16 years of education). These data are drawn from

the Annual Demographic March Files of Current Population Survey (CPS)19. Labor input is a

quality adjusted measure of total labor hours. The methodology used to construct the labor input

and price series is based on Jorgenson, Gollop, and Fraumeni (1987). However, they do not use

the annual data from the CPS to estimate the matrix of demographic groups, but use it to create

smaller matrices, which are used to interpolate and extrapolate demographic information given

in the Decennial Censuses of Population. Furthermore, my deÞnition of demographic groups is

different, as well as the treatment of some special features of the data, such as top-code income

and imputed incomes. A detailed explanation of my methodology can be found in Appendix I.

Figure 1.1 shows the evolution of the skill premium. The features of this series are: moderate

increase during the 1960s, decline over the 1970s, and sharp increase since 1980. The skilled wage

gap increase about 20 percent in the period between 1965 and 1999 despite the growth of over a

hundred percent in the relative abundance of skilled labor (see Figure 1.2). Figure 1.3 also shows

a strong upward trend in the relative share of skilled labor to unskilled labor.

Output and capital data are taken from Jorgenson (2001). The output data are based on

the 1999 benchmark version of the National Income and Product Accounts (NIPA), published by

the Bureau of Economic Analysis (BEA). Real output is measured in chained 1996 dollars, and

its price is the corresponding implicit deßator. The concept of output used is the one developed

by Christensen and Jorgenson (1969)20. The capital estimates begin with investment data from

the BEA, then capital stocks by asset are computed using the perpetual inventory method, and

Þnally they are aggregated using rental prices as weights. Rental prices are calculated using the

19CPS data are taken from Unicon Research Corporation (www.unicon.com). I refer readers to Appendix I for

information about Unicon.
20 In contrast with the standard NIPA deÞnitions, consumers� durable goods are treated symmetrically with in-

vestment goods. Thus, the stock of consumer durables is included in the ßow of capital services and spending on

consumer durables is included in investment rather than consumption spending.
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Jorgenson user-cost formula, which incorporates asset-speciÞc rates of return, depreciation rates,

and revaluation terms. This is particularly important for IT assets, which have high depreciation

rates, high marginal products, and therefore should receive a higher capital service price. The

difference between the growth in capital stock and the growth in capital services is the growth

in capital quality, which represents substitution toward assets with higher marginal products (see

Jorgenson and Stiroh, 2000). Also of importance is the incorporation of constant-quality investment

price indices, which is done by the BEA for computers and office equipment, the prepackaged part

of software21, and the switchgear part of communications equipment, and enters into the cost

of capital through the asset-speciÞc revaluation term. For a more detailed explanation about

the construction of the capital data, and in particular, the hedonic quality-adjusted measures of

information technology equipment see Jorgenson (2001).

I distinguish between different types of capital too. The sum of information technology equip-

ment (IT), equipment non IT (EqnonIT), and structures adds up to total capital. Information

technology is deÞned to include three main categories: computers and peripheral equipment, soft-

ware, and communications equipment. There are signiÞcant differences in the evolution of the

prices and quantities of the various components of capital. Structures grew at an average rate of

2.7 percent per year between 1965 and 1999 whereas total equipment increased twice as much.

Within equipment, the IT component has been growing at an average rate of 15.2 percent per year,

about Þve times the rate of the non IT component. These time series and their growth rates are

displayed in Figures 2.1 and 2.2. Regarding prices, the differences are even more noteworthy (see

Figures 2.3 and 2.4). Since 1965 the price of IT equipment has decreased in absolute terms at

an average rate of about 3.6 percent per year. Meanwhile, the price of structures and the price

of equipment non IT increased over 4 percent. In contrast to the growth rates in the prices of

structures and equipment non IT, which were approximately the same before and after 1980, the

decline in the price of IT accelerated after 1980, its growth rate went from -0.9 percent to -5.47

percent.

Also interesting is the evolution of the ratio of skilled labor to capital, displayed in Figure 3.1.

A substantial decline in the ratio of skilled labor to IT capital is observed. Mild increase in this

ratio with other types of capital. Figure 3.2. presents the ratio of the price of skilled labor to the

price of capital. This ratio has increased consistently over the entire period for capital IT. The rise

in the series for structures and equipment non IT is considerably smaller.

The series of the shares of income earned by skilled labor, unskilled labor, IT, EQnonIT, and

structures are presented in Figure 3.3. The skilled labor share of income has grown at an average

rate of 2.4 percent per year, while the unskilled labor share decreased almost one percent per year.

Between 1965 and 1999, the IT share increased over 4 percent per year, while the equipment non

IT share has been roughly constant, and the structures share declined slightly.

21Prices of own account and custom software are not quality adjusted.
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4 Empirical Results

This section presents the estimates of the translog price function for the benchmark model and

quantify the implications of changes in various factors for the behavior of the skill premium over

the last thirty Þve years. Results for an extended model, which differs from the benchmark model

in the number of inputs and the treatment of capital, are also discussed. I then explain brießy how

the growth of the factors of production and technology have inßuenced the evolution of the relative

share of skilled labor. Finally, separability tests of the validity of restrictions on the forms of the

production and price functions are performed.

4.1 Estimates of the translog function. IT Model

The benchmark model, the IT Model, describes aggregate output as a function of four inputs -

skilled and unskilled labor, IT capital, and non-IT capital- and separate trends for the factor biases

of technical change.

Four equations, corresponding to three of the value shares derived in section 2 and the translog

price function, are estimated jointly using iterative three stage least squares on time series data. A

more detailed explanation of the econometric strategy, as well as information on the instruments

used in this analysis and the test of their validity, can be found in Appendix III. Table 3 contains

the estimates of this model. The complete model consists of 15 free parameters: three elements of

the vector {αp}, which represent the estimates of the input value shares in the base year (1996);
three biases of technical change in the vector

©
βpt
ª
; six share elasticities in the matrix {Bpp};

and the scalars αo, αt, and βtt, which complete the description of technology. The remaining 6

parameters in {αp} ,
©
βpt
ª
, and {Bpp}, as well as the Allen partial elasticities of substitution, are

obtained as functions of these free parameters.

The estimated biases of technical change (panel B, Table 3) reveal the non Hicks neutral nature

of technical change, which has indeed affected the efficiency of the various inputs differently22.

Innovation in the U.S. economy over 1965-99 has been strongly biased in an unskilled labor saving

direction. The estimate of the annual rate of unskilled labor saving technological change is 0.6

percent. Over the same period, technological change has favored the use of skilled labor and the

two types of capital. The positive trend of the skilled labor bias of technology and the negative

trend of the unskilled labor bias of technology represent one of the sources of the increases in the

skill premium. The total effect of technical change on the skill premium depends also on the capital

biases of technical change and the way the two types of capital interact with labor.

The pattern of factor substitution over time is given by the Allen partial elasticities of substitu-

tion (AES), which are calculated from the share elasticities and the input shares. AES�s and their

22A test of Hicks neutrality that sets all the biases of technical change equal to zero is rejected at 1 percent

signiÞcance level.
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corresponding conÞdence intervals are plotted in Figure 4. The average values of these elasticities

are displayed in panel D of Table 3.

The labor market between 1965 and 1999 has been governed by an elasticity between skilled

and unskilled labor of 2, which is consistent with other micro and macro estimates in the literature.

This panel reveals how differently IT capital and non IT capital interact with skilled labor in the

production function. Only IT capital is found to be complementary to skilled labor; their average

AES is -2.1, while that between skilled labor and non IT is 0.7. Griliches�s hypothesis to test

IT-skill complementarity is Ho : σsi = σui against Ha : σsi < σui. The null hypothesis is clearly

rejected at 1 percent signiÞcance level in favor of IT-skill complementarity.

Also noteworthy is that unskilled labor is more substitutable to IT than to non IT capital. These

values suggest that the large increase in the stock of IT, triggered by its price decline, (see Þgures

2-3) has come along with a large demand for its complementary labor input (skilled workers) and a

reduction in the demand for its substitutable labor input (unskilled workers). Both effects result in

a higher skill premium. The effect of changes in non IT capital on the skill premium is ambiguous

since non IT capital is substitutable to both types of labor. The analysis of the contribution of

each input to the growth in the skill premium, performed in the next section, will shed new light

on the total impact of non IT capital on the evolution of the relative wages of skilled workers.

An interesting feature of Figure 4 is that IT-skill complementarity was larger during the late

60s and 70s than in the period that experienced the largest growth in the skilled wage gap, as well

as the largest growth in IT capital. Despite being negative for the whole period, the AES between

skilled labor and IT has increased over time, implying that these two inputs are becoming less and

less complements in production. This result suggests that the impact of the so-called new economy

and the boom of Internet and the start-ups on wage inequality has been smaller than the initial

diffusion of computerization and basic communication capital in the 70s. It also suggests that the

role of IT capital in accounting for the rise in wage inequality is expected to decrease further. One

way to explain this phenomenon is that complementarity of IT to skilled labor has become less

stringent as more people, not only skilled workers, have learned how to use IT more effectively.

In other words, new machines have become more and more accessible or more user-friendly so

that also the unskilled can handle them. Also noteworthy is the evolution of, σun, the elasticity

between unskilled workers and non IT, which is decreasing over time and approaching zero. This

suggests that current changes in the price of non IT capital are not having as large an impact on

the demand for unskilled labor. Next section discusses the implications of non constant elasticities

of substitution on the behavior of the skill premium over time.
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4.2 Contribution of Various Factors to the Growth in the Skill Premium. IT
Model

To see how well the model does in predicting the behavior of the skill premium and the input shares,

Figure 5.1-5.3 show the series in the estimated model and in the data. I Þnd that the estimated

model does fairly well at capturing the changes of these variables. The R-squared corresponding

to the estimated system of equation are: 0.98 for the skilled labor share equation, 0.98 for the

unskilled labor equation, 0.95 for the IT share equation, and 0.90 for the price equation.

The estimates of the IT model are plugged into equation 15 to quantify what fraction of the

variation of the skill premium is accounted for by changes in each of the factor supplies and each

of the input biases of technical change. The Þrst component in equation 15 relates to how changes

in the supply of skilled and unskilled workers affect the skill premium. The complementarity effect

(second component) results from adding the contribution of the two capital inputs to the growth in

the skill premium. Similarly, the sum of the labor (capital) technology components represents the

relative skill (IT) technology effect. Finally, I group all technology terms into a single technology

component, which is also the effect due to unobservable variables, as opposed to the effect due to

observable quantities represented by the relative supply and complementarity effects. The total

contribution of each of these factor to the growth in the skill premium is presented in Table 4 below

Table 4: Total Contribution of Various Factors to the Growth in the Skill Premium
IT Model

Sk Labor Usk Labor IT Non IT Sk Tech Usk Tech IT Tech Non IT Tech

-124 44 50 -9 37 43 -24 2

80 -22

-80 58
Rel Sk Technology Rel IT Technology

41

Observables Unobservables
Rel Supply Effect Technology EffectComplementarity Effect

Note: the Þgures represent cumulative percentage terms.

The sum of bottom and upper lines add up to 19 (total increase in the estimated skill premium)

Overall, the relative supply effect has driven the skill premium down about 80 percent while the

complementarity and technology effects have driven the premium up 41 and 58 percent respectively

over the period 1965-1999. The sum of these three effects results in an increase in the estimated

skill premium of about 19 percent. In other words, controlling for the evolution of the relative

supply of skilled labor, capital-skill complementarity accounts for 41.4 (41/99) percent of the rise

in inequality and factor nonneutral technological change for 58.6 percent. Therefore, observables

variables alone cannot account for most of the variation in the skill premium, as suggested by
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Krusell et al. In fact, capital-skill complementary together with the relative supply effect, which

constitute the effect due to observable variables, is negative. Thus, if only the quantities of labor

and capital had changed, keeping the level of technology Þxed, the skill premium would have been

lower in 1999 than what it was in 1965.

Capital-skill complementarity takes the form of IT-skill complementarity. Growth in IT, trig-

gered by its price decline, has a positive impact of 50 percent. The effect of non IT, which was

ambiguous from the direct observation of the Allen elasticities of substitution, has resulted in a

negative impact on the skill premium because increases in the price of non IT has substituted skilled

labor more intensively than unskilled labor.

The estimates in table 4 suggest that the rise in the skill premium cannot be understood without

accounting for technical change. Indeed, changing input efficiencies have signiÞcantly inßuenced

the skilled wage gap. The implications of skilled labor using and unskilled labor saving innovations

translate into a strong upward pressure on the skill premium, which I call the relative skilled labor

technology effect. On the other hand, the IT bias of technology has driven the premium down by 24

percent. With IT-skill complementarity, IT-using technical change reduces the growth in the skill

premium23. The reason for this effect works through understanding the induced effect of technical

change on IT capital prices and the mechanism behind capital-skill complementarity. Innovations

increase the need for new capital, reßected by the positive IT bias of technical change. In turn, the

induced rise in the marginal return to IT causes a decrease in the demand for its complementary

factor -skilled labor- diminishing therefore the skill premium.

There are therefore two effects related to IT that have operated in opposite directions. On one

hand, more intensive use of IT capital, triggered by declines of IT prices, has created a greater

demand for the labor input complementing this factor, skilled labor, increasing consequently the

skilled wage differential. On the other hand, IT-using technical change tends to increase both the

demand and the price of IT, resulting in a decrease in the demand for skilled labor. The total impact

on the skill premium depends on the relative strength of these two effects. Overall, capital-skill

complementarity has dominated. However, ignoring the effect associated to IT-biased technical

change would over-estimate the effect of IT investment. This results reinforces the importance

played by technical change and calls for precaution when forecasting the implications of further IT

capital deepening in the economy.

Previous literature has recognized the role of skill-biased technological change but has usually

ignored the role of IT-biased technological change, which inßuences the skill premium in the opposite

direction. The mechanism behind capital-skill complementarity has often been misunderstood too.

In this model, increased demand for skilled labor is induced by declines in the relative price of IT

capital (which in turn induces a higher supply of IT).

23A positive IT bias of technical chnage ( ∂wi
∂t

> 0), a negative IT share elasticity with respect to skilled labor

( ∂wi
∂ ln ps

< 0), and a positive IT share elasticity with respect to unskilled labor ( ∂wi
∂ ln pu

> 0) translate into a negative

effect of technical change on the skill premium
¡
∂ ln ps
∂t

< 0 and ∂ ln pu
∂t

> 0
¢
.
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Another way of summarizing the total impact of the various inputs in the growth of the skill

premium, in addition to the already mentioned dichotomy of observables versus unobservables, is

to distinguish between total contribution of labor and total contribution of capital, accounting for

both the behavior of physical quantities and their corresponding efficiencies. The conclusion of

this exercise is that labor cannot explain much of the rise in the skill premium. This is so because

the negative supply effect has offset completely the positive relative skill technology effect. On

the other hand, total capital, involving a positive complementary effect and a negative relative

technology effect, could account for most of the total 19 percent rise. Note that this refers to the

total cumulative impact as of 1999. At any given point in time within the sample period, the

relative contributions of total capital and total labor are different.

Although table 4 is possibly the best summary of the results in this paper, the plots in Figure

6 are more informative in that they represent the evolution of the contributing effects over time.

Panels 1-4 involve each of the 4 terms in equation 15 while panels 5 and 6 correspond to more

aggregated effects. All series are in logs and they have been normalized to be 0 in 1965. Therefore,

increments along the Y-axis should be read as percentage changes. Starting at the origin, the

skill premium should have a value of about 0.2 at the end of the sample period. Bearing this in

mind I can assess the separate impact of each of these effects over time and compare their relative

contribution. These series show cumulative growth rates, therefore an increasing (decreasing) trend

translate into a positive (negative) effect on the skill premium growth. The curvature of the series

tells whether the effect is getting stronger or weaker over time. For instance, an increasing but

ßattening curve means that the factor has contributed to increase the skill premium, but its impact

is getting smaller over time.

Figure 6.1 shows the relative supply effect decomposed into its two components. As expected,

increased supply of skilled labor has had a negative impact on the skill premium over the whole

period while the unskilled labor effect is increasing over time. Growth in the supply of more

educated workers was more rapid in the 70s than in the last decades. This is reßected in the shape

of the series, which is steeper during the 70s than later on. The complementarity effect and its two

components are displayed in Figure 6.2. The IT effect is increasing over the entire period, but it

does so at decreasing rates. This implies that IT-skill complementarity is having a positive impact

on the skill premium, but this effect is becoming less important over time. As mentioned earlier,

this is the result of the increasing substitution elasticity between skilled labor and IT. Since the

mid 70s, non IT capital is having a negative effect on the skill premium, which is accelerating over

time. The combination of these two effects result in a positive but decreasing contribution of total

capital on the growth of the skill premium till the late 80s. Since then the total contribution of

capital has turned negative.

Figure 6.3 shows the large impact of the technologies associated to labor inputs on the growth

of the skill premium. Technical change biased in favor of skilled labor and against unskilled labor
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have contributed to the overall growth of the premium in similar proportions. These Þndings are

consistent with the hypothesis that new technologies favor skilled workers, make themmore efficient,

and replace tasks previously performed by the less educated. However, I observe an acceleration of

the effect due to the negative trend of the unskilled labor bias of technology, while the effect due

to the skilled labor using innovations is losing strength starting in the 80s.

Labor and capital technologies work in opposite direction in what refers to their impact on

the skill premium (see panel 4). The relative IT capital technology effect is totally driven by IT

technology, which has contributed to decrease the skill premium in a way that was stronger at the

beginning of the sample period than in the last decade. The non IT bias of technical change can

be disregarded as a source of changes in the skill premium. Figure 6.5 combines the two relative

technologies effects into a single technology series. If technology alone had changed between 1965

to 1999, the skill premium would have increased about 58 percent, as opposed to the actual increase

of about 20 percent. Furthermore, the impact of technology seems to have accelerated over time.

The last panel illustrates the total role of capital in accounting for changes in the skill premium.

As mentioned before, the overall effect of capital is smaller than the predicted by capital-skill

complementarity only, since the effect of capital technology has worked in the opposite direction.

However, both effects are turning milder over time.

While in Figure 6 the contribution of each factor is analyzed independently, in panel 1 of Figure

7, I aggregate them into three main effects: relative supply, complementarity, and technology, and

plot them together along with the estimated skill premium. The sum of the three effects add up

to the skilled wage premium. Figure 7.2 further aggregates the various effects into what can be

accounted for by observables and what can be accounted for by unobservables. As implied by this

Þgure, none of them alone is enough to explain the total variation of the skill premium during the

last 35 years.

To summarize, controlling for the evolution of the relative supply of skilled labor, capita-skill

complementarity accounts for 41.4 percent of the increased skill premium while technological change

accounts for the remaining 58.6 percent. Furthermore, the contribution of capital is decreasing over

time while the effect of technology is growing. If only observable quantities had changed, while

keeping technology constant, the skill premium would have been about half the value in 1965,

which cast doubt on Krusell et al result. The analysis of more disaggregated effects reveal that

capital-skill complementarity takes the form of IT-skill complementarity, and that the contribution

of technical change consists of two main components: relative skilled labor technology and relative

IT technology, that have worked in opposite directions.

4.3 Five Input Model

I now discuss the results obtained from the estimation of the Þve input model. This model differs

from the benchmark model in the number of capital factors. The Þve input model splits total
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capital into IT capital, equipment excluding IT, and structures. Estimates of the translog price

function, which are contained in Table 5, are consistent with the results of both the IT model and

the regression analysis and provide more detailed information about the non IT capital component.

The interpretation of the Allen partial elasticities of substitution in panel D is that skilled labor

is complementary to IT capital, and to a smaller degree, to structures, while it is substitutable to

equipment non IT. In contrast, unskilled labor and all types of capital are substitutes. A summary

table of these relationships is given by table 6 below

Table 6: Summary of the Substitution Patterns Between Labor and Capital Inputs
Skilled Labor Unskilled Labor

IT complements − substitutes +

Structures complements ↓ substitutes ↓
EQnonIT substitutes + substitutes −

The arrows indicate the direction of the intensity of the interaction. Unskilled labor is thus

more substitutable with IT and much less substitutable with equipment non IT.

Table 7 summarizes the total contribution of each input and the input biases of technology in

the growth in the skill premium and Figures 8.1-8.6 present the evolution of these contributions

-and more aggregated effects- over time.

Table 7: Total Contribution of Various Factors to the Growth in the Skill Premium.
Five Input Model

Sk Labor Usk Labor IT EQnonIT STR Sk Tech Usk Tech IT Tech EQnIT Tech STR Tech 

-115 42 49 -30 12 41 41 -26 6 -1

Observables Unobservables

Rel Supply Effect Complementarity Effect Technology Effect

-73 31 61

Rel Sk Technology Rel IT Technology

-2182

Note: the Þgures represent cumulative percentage terms.

The sum of bottom and upper lines add up to 19 (total increase in the skill premium)

Tables 6 and 7 show two noteworthy results, which were implied by the regression analysis

and by the descriptive features of the data. First, the two component of equipment interact very

differently with the labor inputs in production. This combined with the fact that their prices

and stocks have behaved very differently over time have resulted in opposite effects on the growth

of the skill premium. While IT has driven the skill premium up, equipment excluding IT has

narrowed the skilled wage gap. The total effect of equipment on the skill premium is positive but
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small. Second, structures capital has had a positive, though small, effect on the rise of inequality,

both through mild complementarity to skilled labor and through substitutability to unskilled labor.

Complementarity between skilled labor and structures might be driven by certain sectors, such as

government and Þnance, insurance and real state (FIRE), which employ high proportions of skilled

labor and invest heavily in structures capital24. Figure 8.1 shows how the three components of

capital has affected the evolution of the skill premium over time. This Þgure is analogous to Figure

6.2 for the benchmark model but disaggregates the non-IT series into its two contributing factors:

equipment non IT and structures.

In conclusion, the extended model is consistent with the Þndings of the benchmark model in

that capital-skill complementarity accounts for much less of the variation of the skill premium than

technological change25. It also conÞrms the role of the individual biases of technical change. In

addition, it highlights the importance of treating the three components of capital as differentiated

factors, since their patterns of substitution with the labor inputs and their impact on the growth

of the skill premium are very different.

4.4 Decomposition of the Growth in the Relative Share of Skilled Labor

The relative share of skilled to unskilled labor grew over 100 percent between 1965-1999. As I did

for the skill premium, I identify and quantify the factors that contributed to this growth. Details

follow in Appendix IV. The decomposition of the estimated relative share into three main effects:

relative supply of skilled labor, complementarity, and technology is displayed in Figure 9.1. The

implications are similar to the ones found with the decomposition of the predicted skill premium.

Finally, Þgure 9.2 aggregates the contributions into two aggregate effects: one due to observable

variables (supply and complementarity) and another due to unobservables (technology). I conclude

that none of them alone is able to account for the whole increase in the relative share of skilled

labor.

4.5 Groupwise Separability Tests

As already mentioned, a great advantage of the translog speciÞcation is its ßexibility by not im-

posing any a priori relation among factors of production. This section evaluates the use of more

24Over the period 1965-1999, the share of structures capital in the value of total capital is 87 and 80 percent for

Government and FIRE respectively, compared to an average share of 50 percent for the whole economy. The share

of skilled labor in total labor in these sectors is close to 45 percent while it is 32 percent for the whole economy.

Government and FIRE account for approximately 23 percent of aggregate value added and 33 percent of aggregate

labor services.
25 In the benchmark model, capital-skill complementarity is found to account for 41 percent of the rise in the

premium. The Þve input model predicts a smaller contribution, 34 percent. The true estimate should lie withing

this range. However, the better Þt of the benchmark model suggests that a 40 percent impact is possibly the best

estimate of this contribution.
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restrictive functional forms and performs tests of these restrictions. I consider restrictions on the

patterns of substitution implied by groupwise separability -also called nesting of inputs within a

function . A price function F is separable in the K input prices (p1,p2,...,pK) if the price function

can be represented in the form P = F (G(p1,p2,..., pK), pK+1,..., pJ,t), where the function G is in-

dependent of the J −K input prices (pK+1, pK+2,...,pJ), and the level of technology t. Different

separability assumptions are tested in Table 8. I employ tests statistics based on the Wald statis-

tic: W = n·trace
hbΣ−1Ω ³bΣω − bΣΩ´i , where bΣω is the restricted estimator of the variance-covariance

matrix and bΣΩ is the unrestricted estimator. Under the null hypothesis this test statistic is dis-
tributed, asymptotically, as a chi-squared with number of degrees of freedom equal to the number

of restrictions to be tested.

Among others, the data reject separability of skilled labor and equipment from the other inputs,

and technology -i.e. the nesting. P = F (G(ps,pe), pu, pn, t)-. This result suggests that Krusell et

al speciÞcation, which assumes separability of equipment and skilled labor from unskilled labor, is

clearly too restrictive. Furthermore, their speciÞcation imposes that the elasticity of substitution

between skilled and unskilled labor must be equal to that between unskilled labor and equipment.

They also assume that the elasticities between structures and the rest of factors is equal to one.

The estimation of a model26, which differentiates between equipment and structures the same way

the authors do, shows how restrictive these assumptions might be when the estimates are allowed

to be estimated freely.

5 Conclusions

Empirical work, both at the micro and macro levels, is inconclusive as regards whether the spectac-

ular development of information technology equipment (IT) accounts for the large increase in wage

inequality experienced in the U.S. since 1980. This paper searched for the effects of IT and other

capital investments in macro statistics and attempted to disentangle such effects from non-neutral

technological change. The different nature and evolution over time of the two phenomena at work

-capital-skill complementarity and skill-biased technological change- proved that the distinction is

important in explaining wage inequality. I developed a framework based on a translog production

function with four (and Þve) inputs and separate trends for the factor biases of technical change,

and applied it to time series data from the U.S. over the period 1965-1999. I found that skilled

labor-using innovations and the acceleration in the decline of unskilled labor efficiency constitute

the main forces behind increased wage inequality. This might suggest that better education and

training for unskilled workers would be a successful policy to reduce educational inequalities.

Complementarity between IT and skilled labor also explains a signiÞcant fraction of the variation

in the skill premium, but this effect is decreasing over time. This result suggests that, as time goes

26Not presented. Available upon request.
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by, machines become more and more accessible or more user-friendly so that also the unskilled can

handle them. That is, the compementarity between IT and skilled labor becomes less stringent

as more people, not only skilled workers, learn how to use IT more effectively. I also showed that

investments in non IT equipment and IT-using technology have worked in the direction of closing

the skilled wage gap. Thus, capital accumulation accounts for at most 40 percent of the rise in

inequality, while technology and other unobserved factors are responsible for the remaining 60

percent.

It is worth noting that one channel through which IT, and more generally capital, could affect

inequality is through �spillovers� or �externalities�. This channel refers to effects beyond those

directly related to the size of the capital stock in the economy. For example, investment in new

capital might come along with a re-organization of labor in production and other organizational

innovations, which are likely to further inßuence wage inequality27. These spillover effects will

not be captured by the capital component in equation 15, but by the unobservable (technology)

component. In this sense, the role of IT is underestimated (and that of technology overestimated)

under this production function framework. I could have been overestimating the contribution of

skill-biased technological change through still another channel: the parametrization of technology

as an exponential time trend. Work in progress analyzes the robustness of the results to alternative

non-parametric representations of technology.

The results regarding IT-skill complementarity and IT-biased technical progress have important

implications for the effects of further capital deepening in the economy and for economic growth. To

investigate these implications by analyzing the impact of IT-skill complementarity and IT-biased

technological change on IT-producing sectors compared to IT-using sectors appears a fruitful area

for future research. Other interesting questions about the role of IT cannot be addressed within

the scope of the production-frontier model. For example, the analysis pointed out the important

role of falling IT prices in the economy, but it takes these changes as given. Clearly, an important

direction for future research is an analysis of why IT prices have been falling so drastically over time

and whether it is reasonable to model these changes as exogenous. Furthermore, understanding the

effects of the factor bias of technical change can also help explain wage inequality across countries28.

As Acemoglu (2000) points out, over the past decades wage inequality has grown substantially in

the U.S., U.K. and Canada, with little or no change in European countries. At the same time, the

share of capital has increased rapidly in the European economies while remaining constant in the

Anglo-Saxon countries. This differential behavior might be the result of differences in the nature

of technical change and capital-skill complementarities across these economies.

27 Ichniowski and Shaw (2000) study working practices in steel mills and conclude that IT use is complementary

with changes in human resource management (HRM) practices. Overall, it is the combined effects of IT use and

innovative organizational practices that shape the demand for unskilled workers.
28See Tenreyro (2000) for an analysis of the linkage between inequality and technological progress across countries.
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Appendix I: Construction of the Labor Data
The source of the data are the CPS Annual Demographic March Files for the years 1964-

2000.29 I restrict attention to all people between 16 and 70 years old. The sample does not include

individuals for whom the Census imputed wages due to the fact that the imputation procedures

changed between the 1975 and 1976 March CPS surveys. Katz and Murphy includes these workers,

but makes a correction to account for this change30. Adjustments for top coded earnings are also

made, especially to correct for the big change in the topcode in 1995. I account for self-employed

workers, but assume that their wage distribution is the same as that of the other workers.

The series for skilled and unskilled labor input and wages are constructed in two steps. In the

Þrst step, 88 demographic groups are constructed. In the second step, these groups are sorted into

two categories: skilled labor and unskilled labor. The key variables are aggregated across groups to

obtain category speciÞc averages. In the second step there is some weighting that goes beyond the

CPS weighting scheme needed for adjusting the sampling probability. In what follows, I describe

how the groups are constructed, what criteria I use to sort the demographic groups into skilled

and unskilled categories, and how the group variables are aggregated and weighted to construct

the skilled and unskilled labor input and wage series.

For each record in the CPS, I record demographic characteristics, such as age, sex, and highest

education attended, as well as the CPS weights. I also record current employment status, weeks

worked last year, hours worked last week, and labor income earned last year.

All workers in the sample are grouped according to their demographic characteristics. The

groups I consider are distinguished by the following31;

- Age: there are 11 Þve-year groups

- Sex
29We used the CPS Þles from Unicon Research Corporation.Unicon addresses all of the deÞciencies and difficulties

related to the Þles provided by Census Bureau. Some of these problems are that variables change location and length

over time, old variables are dropped and new ones added, codings change from time to time, as do the questions from

which the variables are derived. Moreover, these changes in questionnaire content are often subtle. The values at

which monetary variables are top-coded vary over time, often in ways not clearly spelled out in the documentation

supplied with the surveys. The software provided by Unicon enables the user to locate relevant variables with relative

ease, to produce data Þles by simply naming variables and years, to collect and view in compact form all coding

and universe information for a variable across all survey years, and to ascertain easily the survey questions that

led to the variable of interest. Moreover, the system provides some information that is not available in the written

documentation available from the Census Bureau, and it offers uniformly recoded versions of selected variables.
30To adjust group average wages for changes in the imputation procedures, Katz multiplies the average wages in

each cell for the years 1963-1975 by a time-invariant, cell-speciÞc, adjustement factor. The adjustment factors were

picked to impose the condition that the average percentage wage difference between the wages of all workers and

those of workers without wage imputations were the same in the 1967-1975 and 1975-1988 periods. The author claims

that, qualitatively, there is no difference between doing this adjustment and excluding workers with imputed wages.
31We deÞne demograhic categories as in Krusell et al (2000). Katz and Murphy (1992) consider, instead, 40 single-

year potential experience categories, where experience is deÞned as min(age-years of schooling-7,age-17). Therefore,

they divide the data into 320 distinct labor groups.
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- Education: the education status is grouped as follows:

1. Ei ≤ 11 : no high school diploma
2. Ei = 12 : high school graduate

3. 12<Ei ≤ 15 : some college
4. Ei > 15 : college graduate and more

Each worker is assigned to one of the resulting 88 groups deÞned by age, sex, and education.

For the computation of the group labor input, I must take into account the labor input of those

workers who reported zero hours worked last week32. I have made this correction by assuming

that their weekly supply of hours is equal to that of the average worker with nonzero hours worked

belonging to their same group. I have made an analogous correction for those who reported zero

total earnings.

The methodology to aggregate groups into skilled and unskilled categories is described in Ho

and Jorgenson (1999) and Jorgenson, Gollop and Fraumeni (1987), However, they do not aggregate

over skilled and unskilled categories, but over other demographic groups. As opposed to Katz and

Murphy, this methodology is based on an index number approach and does not use a Þxed-weight

aggregation scheme. The main feature of this methodology is that it combines hours for workers

with different characteristics, using hourly wage rates as weights, into a constant quality index of

labor input. These indices incorporate characteristics of individual workers such as age, sex, and

education. A constant quality index of labor input is a superior than hours of work as a measure

of labor input because it captures substitution among different types of labor by weighting the

components by their marginal products.

Skilled labor input, LS, is a translog function of its individual components, so that the growth

rate of skilled labor input is a weighted average of the growth rates of its components

∆ lnLS,t =
X
j∈S

νj,t∆ lnLj,t

The weights are given by the average shares of the components in the value of skilled labor

compensation

νj,t =
pj,tLj,tP
j∈S pj,tLj,t

where pj for j ∈ S is the set of prices of all types of skilled labor input.
The corresponding price index of labor input, PS , is the ratio of the value of skilled labor

compensation to the skilled labor input index.

PS,t =

P
j∈S pj,tLj,t
LS,t

32This can happen although they worked for a positive number of weeks: the week before the survey they were

unemployed or, if they had a job, they were not at work.

30



I assume that labor input is proportional to hours worked.. Thus, I deÞne the index of skilled

labor quality, qS , as

qS,t =
LS,t
HS,t

where HS is the unweighted sum of hours worked by all types of skilled labor

HS,t =
X
j∈S

Hj,t

Therefore, the growth rate of the skilled labor quality is given by the difference between weighted

and unweighted growth in skilled labor hours. This reßects substitutions among heterogeneous types

of labor with different characteristics and different marginal products.

∆ ln qS,t =
X
j∈S

νj,t∆ lnHj,t −∆ lnHS,t

Similar variables are deÞned for the unskilled group.

Appendix II: Constraints Implied by the Theory of Production
The constraints on the system of share equations implied by the theory of production are:

� Homogeneity. The value shares are homogenous of degree zero in the input prices. This
implies that the parameters of the price function must satisfy the restrictions

Bppi = 0

β0pti = 0

where i is a vector of ones.

� Product exhaustation. The sum of the value shares is equal to unity. In other words

α0i = 1

B0ppi = 0

β0pti = 0

� Symmetry. The matrix of share elasticities, biases of technical change, and deceleration of
technical change must be symmetric, which implies"

Bpp βpt
β0pt βtt

#
=

"
Bpp βpt
β0pt βtt

#0
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� Nonnegativity. The value shares must be nonnegative. That is

αp +Bpp lnp+ βpt t = 0

� Concavity. The matrix of share elasticities must be nonpositive deÞnite.

Concavity Constraints
A complication that arises when estimating the model is that the aggregate production frontier

should be concave. Most of the conditions implied by the theory of production translate easily on

restrictions on the coefficients. However, concavity requires that the Hessian must be nonpositive

deÞnite, and imposing this turns out to be a little bit more complicate.

The translog price function is concave if H =
h
∂2P
∂p∂p0

i
is non-positive deÞnite, i.e., u0Hu ≤ 0 for

all vectors u. In the log form of the price function I have

∂2 lnP

∂ ln pj∂ ln pk
=

∂

∂ ln pk

pj∂P

P∂pj
= −pj ∂P

∂pj

pk∂P

P 2∂pk
+
pj
P
pk

∂2P

∂pj∂pk

= −vjvk + pjpk
P

∂2P

∂pj∂pk

and

∂2 lnP

∂ lnp2j
=
pj
P

∂P

∂pj
− pj
P 2

µ
∂P

∂pj

¶2
+
p2j
P

∂2P

∂p2j
= vj − v2j +

p2j
P

∂2P

∂p2j

giving the following relation between the two Hessian matrices

1

P
NHN =


p1

p2
. . .

pn


·
∂2P

∂p∂p0

¸
p1

p2
. . .

pn



=

·
∂2 lnP

∂ ln pj∂ lnpk

¸
+


v1v1 · · · v1vn

v1v2
...

...
. . .

v1vn vnvn

−

v1

. . .

vn


= Bpp + vv

0 − V

If H is non-positive deÞnite, then so is _Bpp + vv0 − V. A sufficient condition for this is that
Bpp is non-positive deÞnite. However, this is a very restrictive condition and I shall concentrate on

the entire expression. The price function will be globally concave if Bpp + vv0 − V is non-positive

deÞnite for all values of v. This, however, is hard to satisfy with the data and I shall merely impose

local concavity, that is, the matrix is to be non-positive deÞnite for the realized values of v.
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To implement this curvature restriction a Cholesky decomposition is done on both Bpp and

Bpp + vv
0 − V matrices. First I decompose the Bpp matrix for the case of four inputs

Bpp = Λ∆Λ

=


1

λ12 1
... 1

λ14 · · · λ34 1



δ1

δ2

δ3

δ4




1

λ12 1
... 1

λ14 · · · λ34 1



=


δ1

δ1λ12 δ1λ
2
12 + δ2

δ1λ13 δ1λ12λ13 + δ2λ23
. . .

δ1λ14 δ1λ12λ14 + δ2λ24 · · · δ1λ
2
14 + δ2λ

2
24 + δ3λ

2
34 + δ4


The second matrix Bpp + vv0 − V is decomposed similarly

Bpp + vv
0 − V = LDL0

I use dj and ljk in place of δj and λjk for the Þrst matrix. The following relations can then be

derived for the second equation

d1 = β11 + v
2
1 − v1

l12 = (β12 + v1v2) /d1

d2 = β22 + v
2
2 − v2 − d1l212

l13 = (β13 + v1v3) /d1

l23 = (β23 + v2v3 − d1l12l13) /d2
d3 = β33 + v

2
3 − v3 − d1l213 − d2l232

l14 = (β14 + v1v4) /d1

l24 = (β24 + v2v4 − d1l12l14) /d2
l34 = (β34 + v3v4 − d1l13l14 − d2l23l24) /d3
d4 = β44 + v

2
4 − v4 − d1l214 − d2l224 − d3l234

In the estimation of the model, Bpp (equivalently, ∆ and Λ) is estimated. I can then calculatebBpp + vtv0t − Vt and Lt DtL0t for each t. The concavity conditions are imposed by �squeezing� the
δ and λ0s so that the derived djt �s are negative in the sample period.

Appendix III: Econometric Strategy
To estimate the price function jointly with the share equations, it is necessary to specify a

stochastic framework. I do this by adding a random disturbance term to each equation in the
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system and assume that the resulting vector is multivariate normally distributed with mean zero

and constant covariance matrix.

Homogeneity of degree one of the price function implies that the value shares sum to unity and

that these shares are homogeneous of degree zero in the input prices. This feature of the share

equation system implies that estimation of the four share equations will be non-feasible, since the

disturbance covariance matrix will be singular and non-diagonal. The most common procedure to

handle this singularity problem is to drop an arbitrary equation. Some estimation procedures, such

as iterated three-stage least squares are invariant to the choice of which three equations are directly

estimated. I decide to drop the share equation for non-IT capital in the four input model, and for

structures in the Þve input model.

At the level of an individual Þrm it may be reasonable to assume that the supply of inputs is

perfectly elastic, and therefore that input prices can be taken as Þxed. With aggregate data the

price that determine demands and supplies cannot be treated as exogenous variables. Thus, the

estimation procedure is iterated three-stage least squares. The I3SLS estimator is consistent and

asymptotically efficient. The necessary condition for identiÞcation is that

1

2
(J + 3) < (J − 1)min(I, T − 1)

where J is the number of inputs, and I is the number of instruments. The instruments used in

the estimation include measures of tax rates, population, government demand, and lagged values

of prices and wealth. The complete list of instruments, as well as Hausman tests, can be found in

Table A1.

3SLS is equivalent to GMM with efficient weights. The model is estimated in two steps. In

the Þrst step, the model is estimated without imposing the concavity constraints, and using the

identity matrix as the weighting matrix. The residuals from each equation are used to compute

the covariance matrix of the system, which is then used in forming the weighting matrix bΣ−1 in
the second stage. The second stage imposes the concavity constraints derived above. This stage is

equivalent to Þnding the set of parameters that minimize the following quadratic form subject to

the concavity constraints

J = (Y −XΘ)0 ¡Σ−1 ⊗ ¡Z ¡Z 0Z¢Z 0¢¢ (Y −XΘ)
where Y is a vector of stacked dependent variables, X is a block-diagonal matrix of the inde-

pendent variables with the cross equation constraints imposed, Θ is the vector of parameters to be

estimated, and Z is the matrix of instruments. Note that Θ include αo, αj , αt, βjk βjt, and βtt for

j = s, u, i, n.

Hausman Test
I test the validity of the instruments contained in Table A1 performing some Hausman exogene-

ity tests. A Hausman test compares two sets of estimates of the same parameters using the same
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data: one obtained using an efficient estimation technique,bδ∗, (in this case, 3SLS assuming all the
15 instruments are exogenous), and another obtained by an estimation method, which is consistent

but not efficient, bδ, (in this case, 3SLS excluding one of the potential instruments). The test statis-
tic is W =

³bδ∗ − bδ´0 nEst.V ar hbδi−Est.V ar hbδ∗io−1 ³bδ∗ − bδ´ . This is the Wald statistic based
on the difference of the two estimators and is distributed as a χ2 with degrees of freedom equal

to the number of observations minus the number of parameters estimated. The null hypothesis

is that the 3SLS estimates using the Þfteen instruments is more efficient that the estimates using

all instruments but a given subset of them. The high p-values showed in Table A1 conÞrm the

exogeneity of the instruments.

Appendix IV: Decomposition of the growth of the relative share of skilled
labor

The decomposition of the growth rate of the relative share of skilled labor is performed similarly

to the decomposition of the growth rate of the skill premium presented in the text. The vector of

input shares, v, is given by

v = αp +Bpp ln p+ βpt t

= αp +Bpp ln

µ
vPQ

q

¶
+ βpt t

Taking logs and differentiating with respect to time, we obtain

gv = Λ
¡
Bpp (gv − gq + gPQ) + βpt

¢
where gx is the growth rate of variable x, Λ is a diagonal matrix whose (j, j) element is 1

vj
.

Since BppgPQ = 0, we can rewrite the above expression as

gv = (Bpp − V )−1
¡
Bppgq − βpt

¢
where V is a diagonal matrix whose (j, j) element is vj.

If v = (vs, vu, vi, vn), the growth rate in the relative share of skilled labor can be written as

gvs − gvu = (φ1gqs + φ2gqu) + (φ3gqi + φ4gqn) + (ψ1βst + ψ2βut) + (ψ3βit + ψ4βnt)

where φk is the element (1, k) minus the element (2, k) in the matrix (Bpp − V )−1Bpp, and ψk
is the element (1, k) minus the element (2, k) in the matrix (Bpp − V )−1 for k = 1, 2, ..4. φk and

ψk vary over time.

The Þrst component, (φ1gqs + φ2gqu) , affects the growth rate of the relative share of skilled

labor through the growth in the supplies of skilled and unskilled labor. This is the relative supply

effect. The second component, (φ3gqi + φ4gqn) , the complementarity effect, depends on the growth
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of IT capital relative to that of non-IT capital. Finally, the last two components constitute the

technology effect. The technology component involves: Þrst, the relative efficiency of skilled labor,

which is a function of the biases of technical change of skilled and unskilled labor, and, second, the

relative efficiency of IT capital, which depends on the biases of technical change of IT capital, and

non IT capital.
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Table 1: The Effect of Capital and Technology on the Skill Premium 
 
Dependent Variable is Log College Wage Premium 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
              
Rel. Supply -0.574*** -0.596*** -0.551*** -0.595*** -0.595*** -0.686*** -0.364*** -0.763*** -0.3818*** -0.406*** -0.354*** -0.416*** -0.297*** 
 (0.043) (0.053) (0.047) (0.039) (0.040) (0.087) (0.055) (0.081) (0.083) (0.042) (0.036) (0.050) (0.046) 
              
Trend 0.021***  0.031***  0.002  0.040***  0.036***  0.018***  0.022*** 
 (0.001)  (0.008)  (0.007)  (0.0041)  (0.005)  (0.004)  (0.004) 
              
Log(EQ)  0.362*** -0.178           
  (0.031) (0.152)           
              
Log(IT)    0.149*** 0.136***     0.271*** 0.181*** 0.266*** 0.178*** 
    (0.009) (0.049)     (0.021) (0.027) (0.024) (0.026) 
             
Log(EQnonIT)     0.571*** -0.602***   -0.555*** -0.708*** -0.579*** -0.643*** 
      (0.070) (0.1263)   (0.093) (0.084) (0.113) (0.087) 
              
Log(STR)        1.031*** -0.812***   0.075 -0.335* 
        (0.106) (0.308)   (0.200) (0.177) 
              
              
Adjusted-R2 0.85 0.79 0.85 0.88 0.88 0.65 0.91 0.73 0.87 0.94 0.96 0.94 0.96 
DW 0.55 0.50 0.53 0.73 0.72 0.39 0.72 0.48 0.48 0.99 1.43 1.00 1.52 
 
Note: This table presents the results of OLS regressions. EQ, IT EqnonIT, STR stand for equipment capital, information technology capital, equipment excluding 
information technology, and structures, respectively. Rel. Supply is the ratio of skilled to unskilled workers.  Skilled labor is defined as requiring college 
completion. DW is the Durbin-Watson statistic for serial correlation. 
Standard errors in parentheses. *** indicates statistical significance at 1% level, ** at 5% level, * at 10% level.   



Table 2: The Effect of Capital Prices and Technology on the Skill Premium 
 
Dependent Variable is College Wage Premium 
  (1) (2) (3) (4) (5) (6) (7) (8) 
          
Log(Rel.Supply) -0.574*** -0.232* -0.574*** -0.459*** -0.569*** -0.555*** -0.428*** -0.546***
   (0.043) (0.085)  (0.046)  (0.052)   (0.041)  (0.050)  (0.055)  (0.047) 
          
Trend 0.021***  0.021***  0.015*** 0.021***  0.015*** 
  (0.001)   (0.002)   (0.002) (0.001)  (0.003) 
          
Log(P_EQ/P_STR)  -0.360** 0.002      
   (0.119) (0.059)      
          
Log(P_IT/P_STR)    -0.229*** -0.078***  -0.227*** -0.079** 
      (0.023)   (0.031)   (0.021)   (0.033) 
          
Log(P_EQNIT/P_STR)      0.044 0.179** 0.088 
       (0.061)  (0.077) (0.060) 
          
Adjusted R2 0.85 0.18 0.85 0.76 0.87 0.85 0.76 0.87 
 
Note: This table presents the results of OLS regressions. P_EQ, P_IT P_EqnonIT, P_STR stand for price of equipment capital, 
information technology capital, equipment excluding information technology, and structures, respectively. Rel. Supply is the 
ratio of skilled to unskilled workers.  Skilled labor is defined as requiring college completion. 
Standard errors in parentheses. *** indicates statistical significance at 1% level, ** at 5% level, * at 10% level.   
 



Table 3: Estimates of the Translog Price Function. IT Model 
 

 
PANEL A: Intercept Parameters (ααααj) 

Skilled labor Unskilled labor IT capital Non IT capital 

0.250*** 0.342*** 0.050*** 0.358*** 
(0.002) (0.003) (0.001) (0.003) 

 
 
PANEL B: Biases of technical change (ββββjt)   

Skilled labor Unskilled labor IT capital Non IT capital 

0.0026*** -0.0066*** 0.0016*** 0.0023*** 
(0.0006) (0.0005) (0.0003) (0.0006) 

 
 
PANEL C: Share elasticities (ββββjk)   

 Skilled labor Unskilled labor IT capital Non It capital 
Skilled labor -0.052***    
 (0.022)    
Unskilled labor 0.092*** 0.021   
 (0.017) (0.017)   
IT capital -0.020*** 0.001 0.004  
 (0.008) (0.007) (0.005)  
Non It capital -0.020 -0.114*** 0.015* 0.120*** 

 (0.014) (0.013) (0.008) (0.021) 
 
 
PANEL D: Allen partial elasticities of substitution (σσσσjk) 

 Skilled labor Unskilled labor IT capital Non It capital 
Skilled labor -5.211    
Unskilled labor 2.040 -1.180   
IT capital -2.086 1.082 -27.053  
Non IT capital 0.694 0.208 2.433 -0.934 
 
Note: The table presents the results of 3SLS estimation of the system defined by the input share equations and the price 
function. Instruments and Hausman tests are presented in Table A1. The R2 corresponding to these equations are: 0.98 
for the skilled labor share equation, 0.98 for the unskilled labor share equation, 0.95 for the IT share equation, and 0.90 
for the price equation. The period of analysis is 1965-1999. Standard errors within parentheses. *** indicates statistical 
significance at 1% level, ** at 5 % level, * at 10% level. Allen partial elasticities of substitution in panel D represent 
mean values over the entire sample. The time series and their corresponding confidence intervals are showed in Figure 
4. The remaining estimates of the system are: i) the negative of the rate of technical change in 1996, α t =0.0024 with 
standard error of 0.001; ii) the deceleration of technical change, βtt =0.0002 with standard error of 0.00009; iii) the 
intercept parameter of the price function, α 0 =0.008 with standard error of 0.008. 
 



Table 5: Estimates of Translog Price Function. Five Input Model 
 
 
PANEL A: Intercept Parameters (ααααj) 

Skilled labor Unskilled labor EQ non IT IT Structures 

0.249*** 0.342*** 0.169*** 0.050*** 0.191*** 
(0.003) (0.003) (0.003) (0.001) (0.004) 

 
PANEL B: Biases of technical change (ββββjt)   

Skilled labor Unskilled labor EQ non IT IT Structures 

0.0032*** -0.0066*** 0.0013** 0.0017*** 0.0004 
(0.0007) (0.0006) (0.0007) (0.0003) (0.0008) 

 
PANEL C: Share elasticities  (ββββjk) 

 Skilled labor Unskilled labor EQ non IT IT Structures 

Skilled labor -0.074**     
 (0.037)     
Unskilled labor 0.111*** 0.010    
 (0.029) (0.026)    
EQ non IT 0.018 -0.062** 0.031   
 (0.032) (0.026) (0.036)   
IT -0.018** 0.003 0.005 0.006  
 (0.009) (0.008) (0.009) (0.004)  
Structures -0.038 -0.062*** 0.009 0.005 0.086*** 
 (0.024) (0.022) (0.028) (0.009) (0.029) 

 
PANEL D: Allen partial elasticities of substitution (σσσσjk) 

 Skilled labor Unskilled labor EQ non IT IT Structures 

Skilled labor -5.755     
Unskilled labor 2.259 -1.239    
EQ non IT 1.592 0.062 -4.270   
IT -1.765 1.203 1.951 -25.190  
Structures -0.044 0.206 1.317 1.848 -1.896 
 
Note: The table presents the results of 3SLS estimation of the system defined by the input share equations and the price 
function. Instruments and Hausman tests are presented in Table 7. The R2 corresponding to these equations are: 0.98 
for the skilled labor share equation, 0.98 for the unskilled labor share equation, 0.76 for the EqnonIT share equation, 
0.95 for the IT share equation, and 0.92 for the price equation. Period of analysis is 1965-1999. Standard errors within 
parentheses. *** indicates statistical significance at 1% level, ** at 5 % level, * at 10% level. Allen partial elasticities 
of substitution in panel D represent mean values over the entire sample. The time series and their corresponding 
confidence intervals are available upon request. The remaining estimates of the system are: i) the negative of the rate of 
technical change in 1996, α t =0.0023 with standard error of 0.001; ii) the deceleration of technical change, βtt =0.0002 
with standard error of 0.00009; iii) the intercept parameter of the price function, α 0 =0.008 with standard error of 
0.008. 



Table 8: Testing Groupwise Separability in Inputs
        Wald statistics for translog price and production functions

Degrees of
freedom Price Production

{S,I} separable from {U,NI} 1 20.34 27.8
{U,I} separable from {S,NI} 1 16.92 29.67
{S,U} separable from {I,NI} 1 -0.87 10.68
{S,E} separable from {U,STR} 1 54.92 26.81
{U,E} separable from {S,STR} 1 24.07 -2.23
{S,U} separable from {E,STR} 1 1.88 -5.88

Critical values of Chi-Squared Distribution
Degrees of

freedom 0.1 0.05 0.01
1 2.71 3.84 6.64

Note: S=skilled labor, U=unskilled labor, I=IT, NI=nonIT, E=equipment, STR=structures

       Level of significance



Figure 1.3. Relative Share of Skilled to Unskilled  Labor
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Figure 1.1. The Skill Premium (normalized with 1996=1)
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Note: Skilled labor is defined as requiring college completion or better. Workers 
with less than 16 years of education are defined as unskilled labor. Labor input 
is a quality adjusted measure of total labor hours. Data from March CPSs. 



Figure 2.1. Capital Services (logs)
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Figure 2.2. Growth Rates of Capital Services
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Figure 2.3. Price of Capital (logs, normalized with 1996=0)
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Figure 2.4. Growth Rates of Price of Capital
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Figure 3.1. Skilled Labor to Capital (logs)
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Figure 3.2. Relative Price of Skilled Labor to Capital (logs, normalized with 1996=0)
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Figure 3.3. Evolution of the Shares
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Note: Capital and output data, based on the National Income and 
Product Accounts published by the Bureau of Economic Analysis, 
are taken from Jorgenson (2001). 



Figures 4.1-4.10: Allen Elasticity of Substitution and Standard Error Bands.
IT Model 

Figure 4.1: AES Skilled Labor
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Figure 4.2: AES Skilled and Unskilled Labor

1.0

1.5

2.0

2.5

3.0

3.5

1965 1970 1975 1980 1985 1990 1995

Figure 4.3: AES Skilled Labor and IT
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Figure 4.4: AES Skilled Labor and Non IT
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Figure 4.5: AES Unskilled Labor
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Figure 4.6: AES Unskilled Labor and IT
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Figures 4.1-4.10: continued

Figure 4.7: AES Unskilled Labor and Non IT
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Figure 4.8: AES IT Capital
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Figure 4.9: AES IT and Non IT
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Figure 4.10: AES Non IT Capital
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Figure 5.3: Input Shares (Actual and Predicted by IT Model)
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Figure 5.4: Input Shares (Actual and Predicted by Five Input Model)
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Figure 5.1: Skill Premium, normalized w ith 1996=1 (Actual and Predicted)
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Figure 5.2: Relative Share of Skilled to Unskilled Labor (Actual and Predicted)
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Figures 6.1-6.6: Contribution of Different Factors to the Growth in the Skill 
Premium. IT Model (in logs, normalized with 1965=0)

Figure 6.1: Relative Supply Effect
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Figure 6.2: Complementarity Effect
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Figure 6.3: Relative Skilled Labor Technology Effect
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Figure 6.4: Relative IT Technology Effect
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Figure 6.5: Technology Effect
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Figure 6.6: Total Capital Effect
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Figures 7.1-7.2: Contribution of Three Main Factors to the Growth in the Skill 
Premium. IT Model (in logs, normalized with 1965=0)

Figure 7.1: Decomposition of Skill Premium. Main Effects
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Figure 7.2: Decomposition Skill Premium. Obsservables vs Technology
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Figures 8.1-8.6: Contribution of Different Factors to the Growth in the Skill 
Premium. Five Input Model (in logs, normalized with 1965=0)

Figure 8.1: Complementarity Effect
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Figure 8.2: Relative Capital Technology Effect
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Figure 8.3: Technology Effect
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Figure 8.4: Total Capital Effect
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Figure 8.5: Decompostion of Skill Premium. Main Effects
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Figure 8.6: Decomposition of Skill Premium. Observables vs Technology
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Figures 9.1-9.2: Contribution of Main Factors to the Growth in the Relative Share of 
Skilled Labor. IT Model

Figure 9.1: Decomposition of the Relative Share of Skilled Labor. Main Effects
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Figure 9.2: Decomposition of the Relative Share of Skilled Larbor. Observables vs Technology
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Table A1: Hausman Exogeneity Tests

Degrees of Wald
Freedon Statistic p_value p_value*15

I1 5 22.36 0.00 0.01
I2 5 2.49 0.78 11.67
I3 3 7.61 0.05 0.82
I4 5 0.44 0.99 14.91
I5 4 3.19 0.53 7.90
I6 4 0.86 0.93 13.96
I7 5 6.36 0.27 4.10
I8 4 0.87 0.93 13.93
I9 5 3.91 0.56 8.44
I10 2 1.12 0.57 8.57
I11 3 5.07 0.17 2.50
I12 5 2.16 0.83 12.39
I13 7 14.23 0.05 0.71
I14 4 3.53 0.47 7.09
I15 4 3.79 0.44 6.53

Note: the instruments used in the analysis are the following:
I1 Constant
I2 Average Marginal Tax Rate on Personal Labor Income
I3 Effective Corporate Income tax rate
I4 Average Marginal Tax Rate on Dividends
I5 Rate of Taxation on Consumption Goods
I6 Time Endowment in 1999 dollars
I7 Lagged Price of personal Consumption Expenditures
I8 Lagged Price of Leisure and Unemployment
I9 Lagged Capital Service Price
I10 Logarithm Level of Technology
I11 Lagged Price Index of Private Domestic Labor Input
I12 Lagged Real Full Consumption
I13 Lagged Private Wealth Including Claims on Government and the ROW
I14 US Population
I15 Government Demand

High p-values indicate that we cannot reject the null hypothesis of exogeneity.
The last column presents p-values adjusted due to simultaneous inference.


