Fourth Summer School in Trade, Industrialisation, and Development 2005

Gargnano, Italy

Trade, Innovation, and Technology Diffusion: Implications for Developing Countries

Lecture 6: Innovation, Diffusion, and Trade

September 2005

Issues:

- Effect of Diffusion on Welfare in an Open Economy (Krugman, Samuelson, Gomery and Baumol)
- Effect of Trade and Diffusion on the Incentive to Innovate in different countries.
- Diffusion and Trade as Substitutes: Diffusion eliminates differences in comparative advantage
- Effect of Intellectual Property Regimes on the incentive to innovate (Helpman, Lai, Dinopoulos and Segerstrom)

Various pieces of evidence:

- Research Concentration
- Trade and Diffusion Barriers
- Parallel Growth

Previous Work:

- Grossman-Helpman (1991)
- Krugman (1979) Helpman (1993) North South models
- Diffusion: EK (1996, 1999)
- Trade: EK (2001,2002,2005).
- Here: an integration
- Why has it taken so long?

The Static Model:

• Technology for final goods production:

$$Q_n = \left[\int_0^1 x_n(j)^{(\sigma-1)/\sigma} dj\right]^{\sigma/(\sigma-1)}$$

Here $x_n(j)$ is the amount of intermediate j used for production in n and σ is the elasticity of substitution across intermediates.

- $\bullet \ M \ {\rm countries}$
- Q is costlessly tradable and numeraire.
- M + 1 types of technologies for each intermediate good. Each country *i* has a technology that is exclusive to it and there is a commonly available technology *C*.
- TFP $z_i(j)$ for technology i = 1, ..., M, C.

Distributional Assumptions:

• Fréchet distributions of $z_i(j)$.

$$\Pr[Z_i \le z] = \exp(-T_i z^{-\theta})$$

independent across i = 1, ..., M, C.

• Exclusive technologies can only be used in country of invention. C technology is footloose.

Other assumptions:

- Labor is only input, with wage w_i .
- Iceberg transport costs $d_{ni} \ge 1$ for intermediates.
- Market Structure: Bertrand (to allow for profits, as in quality ladders).

Inevitable Ricardian taxonomy:

- 1. Type I: $w_n/w_i < d_{ni} \forall n, i \rightarrow C$ goods made with C technologies not traded (multiple advanced countries)
- 2. Type II: If $\exists i \text{ st } w_n/w_i > d_{ni} \rightarrow C$ technologies not used in n. (North-South models)
- 3. Type III: $\max_i \{w_n/w_i\} = d_{ni} \to C$ technologies potentially used in both *i* and *n* with potential export from *i* to *n* (intermediate case)

Type I (Multiple Advanced Economies)

• Unit costs

$$c_n(j) = \min\{\min_i \{w_i d_{ni}/z_i(j)\}, w_n/z_C(j)\} \ n = 1, ..., M$$

• Cost distribution in country n:

$$\begin{aligned} H_n(c) &= \Pr[C_n(j) \leq c] \\ &= 1 - \exp\left[-\Phi_n c^{\theta}\right] \quad n = 1, ..., M \end{aligned}$$

where $\Phi_n = \sum_{i=1}^M T_i (w_i d_{ni})^{-\theta} + T_C w_n^{-\theta}$

• Output price index:

$$P_n = \gamma \Phi_n^{-1/\theta}$$

which must equal 1, the price of the final good, if it is produced in a positive amount in country n. For simplicity we assume that parameter values always keep us in this case. The parameter γ is complicated but depends only on market structure and the parameters θ and σ .

• The solution to

$$P_{n} = \gamma \Phi_{n}^{-1/\theta} = \gamma \left[\sum_{i=1}^{M} T_{i}(w_{i}d_{ni})^{-\theta} + T_{C}w_{n}^{-\theta} \right]^{-1/\theta} = 1 \ n = 1, ..., M$$

determines wages w_n in terms of the technology parameters T_i and geography parameters d_{ni} . • To be in a type I equilibrium we need that the w_i that solve the conditions for labor market equilibrium satisfy $w_n/w_i < d_{ni} \ \forall n, i$. • Probability country n uses technology i for a good j:

$$\pi_{ni} = \frac{T_i (w_i d_{ni})^{-\theta}}{\Phi_n} \quad i, n = 1, ..., M$$
$$\pi_{nC} = \frac{T_C w_n^{-\theta}}{\Phi_n} \qquad n = 1, ..., M$$

• Full employment:

$$w_i L_i^P = \frac{\theta}{1+\theta} \sum_{n=1}^M \pi_{ni} Q_n + \pi_{iC} Q_i \quad i = 1, ..., M$$

Given L^P_i, w_i, and the parameters inside π_{ni}, the solution determines final outputs Q_i.

Type II (North-South)

- Two types of technologies, N and C.
- Costs in N and S:

$$c_{N} = \min\{w_{N}/z_{N}(j), w_{S}d_{NS}/z_{C}(j)\}\$$

$$c_{S} = \min\{w_{N}d_{SN}/z_{N}(j), w_{S}/z_{C}(j)\}\$$

• Cost distributions

$$H_n(c) = \Pr[C_n \le c] = 1 - \exp\left[-\Phi_n c^{\theta}\right] \quad n = N, S$$

where

$$\Phi_{N} = T_{N}w_{N}^{-\theta} + T_{C}(w_{S}d_{NS})^{-\theta}$$

$$\Phi_{S} = T_{N}(w_{N}d_{SN})^{-\theta} + T_{C}w_{S}^{-\theta}$$

• For positive production of Q in N and S requires:

$$P_{N} = \gamma \Phi_{N}^{-1/\theta} = \gamma \left[\sum_{i=1}^{N} T_{N} w_{N}^{-\theta} + T_{C} (w_{S} d_{SN})^{-\theta} \right]^{-1/\theta} = 1$$
$$P_{S} = \gamma \Phi_{S}^{-1/\theta} = \gamma \left[\sum_{i=1}^{N} T_{S} (w_{N} d_{NS})^{-\theta} + T_{C} w_{S}^{-\theta} \right]^{-1/\theta} = 1$$

the solution to which determines w_N and w_S .

• To be in a type II equilibrium we need that $w_N/w_S > d_{NS}$.

• Probability country n uses technology i for a good j:

$$\pi_{ni} = \frac{T_i (w_i d_{ni})^{-\theta}}{\Phi_n} \quad i = N, C, \ n = N, S$$

• Full employment:

$$w_N L_N^P = \frac{\theta}{1+\theta} \sum_{n=1}^N \pi_{NN} Q_N + \pi_{SN} Q_S$$
$$w_S L_S^P = \frac{\theta}{1+\theta} \sum_{n=1}^N \pi_{NC} Q_N + \pi_{SC} Q_S$$

• The solution determines outputs Q_N and Q_S .

Market Structure and Innovation

Ideas: a way to make a good j with efficiency q, realization of a r.v. Q with Pareto distribution:

$$F(q) = 1 - q^{-\theta}.$$

Only an idea that lowers cost somewhere will be used. Initially ideas are exclusive to the country of invention. Growth and Diffusion

- Labor force growth rate *n*.
- Rate of diffusion out of exclusive into common technologies ϵ .
- Ratio of exclusive technologies to labor forces:

$$t_i = T_i / L_i$$

- Research productivity α_i .
- Growth of t_i :

$$\frac{\dot{t}_i}{t_i} = \frac{\dot{T}_i}{T_i} - \frac{\dot{L}_i}{L_i} = \frac{\alpha_i r_i^\beta}{t_i} - (n+\epsilon)$$

• Steady state:

$$t_i^* = \frac{\alpha_i r_i^\beta}{n+\epsilon}$$

• Steady state ratio of common to exclusive technologies:

$$t_C^* = \frac{T_C}{\sum_{i=1}^N T_i} = \frac{\epsilon}{n}$$

- Discount factor ρ , IP strength $\lambda_{ni} \in [0, 1]$.
- The s.s. value of an idea:

$$V_{i} = \sum_{n=1}^{M} \left[\frac{1}{(\rho + \epsilon) \theta - n} \lambda_{ii} (w_{i} d_{ni})^{-\theta} + \left(\frac{1}{\rho \theta - n} - \frac{1}{(\rho + \epsilon) \theta - n} \right) \lambda_{ni} w_{n}^{-\theta} \right] Q_{n}$$

• Labor-market equilibrium:

$$\alpha_i r_i^{\beta - 1} V_{it} = w_{it} \quad r_{it} \in [0, 1]$$

Type 1 Simulations

Five major OECD research economies: Germany, France, UK, Japan, USA:

Base parameters (based on EK 1999 and fitting research shares):

heta	σ	n	ho	ϵ	eta
11	11	.02	.08	.09	.16

Research shares (OECD):

 r_{DE} r_{F} r_{UK} r_{J} r_{USA} .00345 .00164 .00264 .00474 .00400

Research productivities (to fit research shares):

$lpha_{DE}$	$lpha_F$	$lpha_{UK}$	$lpha_J$	$lpha_{USA}$
364	210	293	447	340

Labor forces, in millions (Summers Heston)

IP strength: $\lambda_{ii} = 1, \ \lambda_{ni} = .5 \ n \neq i.$

Geography d_{ni} (θ dependent) from EK (2002):

to\from	DE	F	UK	J	USA
DE	1	1.20	1.24	1.80	1.70
F	1.31	1	1.35	1.95	1.85
UK	1.27	1.69	1	1.83	1.65
J	1.69	1.69	1.69	1	1.60
USA	1.46	1.46	1.38	1.46	1

Baseline wages:

DEFUKJUSA9.159.139.149.199.21

(too similar because of extent of diffusion, but note roles of size, geography, and research productivity)

Counterfactuals:

- 1. Stricter foreign IP $(\lambda_{ni} = 1 \ \forall n, i)$: r rises trivially, slightly higher wage in USA
- 2. Weaker foreign IP ($\lambda_{ni} = 0, n \neq i$) similar.
- 3. Proportionately higher cross-country geographic barriers: slightly lower wages and less research.
- 4. All countries as isolated as France from Japan: slightly more US research.

5. Slower diffusion ($\epsilon = .009$):

	DE	F	UK	J	USA
r_{base}	.0033	.0017	.0026	.0046	.0039
$r_{\epsilon=.009}$.0023	.0012	.0018	.0038	.0041
w_{base}	9.15	9.13	9.14	9.19	9.21
$w_{\epsilon=.009}$	8.44	8.33	8.39	8.68	8.87

Note shift of research to the USA and greater wage dispersion favoring large countries.

- 6. Proportionally higher research productivities (α 's rise in proportion): wages rise, but little other effects.
- 7. All countries have top (Japanese) R and D productivity $\alpha_J = 447$:

	DE	F	UK	J	USA
r_{base}	.0033	.0017	.0026	.0046	.0039
$r_{\alpha=447}$.0032	.0032	.0032	.0035	.0041
w_{base}	9.15	9.13	9.14	9.19	9.21
$w_{\alpha=447}$	9.38	9.37	9.38	9.40	9.45

More research in larger countries, and a shift from Japan to the USA. The US wage rises the most.

8. All countries have the largest US labor force $L_{USA} = 120,000$ thousand:

	DE	F	UK	J	USA
r_{base}	.0033	.0017	.0026	.0046	.0039
$r_{L=120,000}$.0039	.0021	.0031	.0049	.0039
w_{base}	9.15	9.13	9.14	9.19	9.21
$w_{L=120,000}$	9.94	9.92	9.93	9.95	9.93

More research in countries that had been small before.

Type 2 Simulations

Stricter IP in the South can lead to more research.

Summary

- 1. There are many ways to model the interaction of innovation, diffusion, and trade.
- 2. A reasonable model suggests that who does research depends on the interaction of relative research productivity, market size, and patterns of diffusion.
- 3. Absolute productivity and barriers to trade don't seem to matter much.
- 4. The treatment of foreign IP doesn't seem to matter much, although tougher protection does seem to increase research slightly.